Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (635)

Search Parameters:
Keywords = hard-milling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3340 KiB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 255
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

35 pages, 6389 KiB  
Article
Towards Sustainable Construction: Experimental and Machine Learning-Based Analysis of Wastewater-Integrated Concrete Pavers
by Nosheen Blouch, Syed Noman Hussain Kazmi, Mohamed Metwaly, Nijah Akram, Jianchun Mi and Muhammad Farhan Hanif
Sustainability 2025, 17(15), 6811; https://doi.org/10.3390/su17156811 - 27 Jul 2025
Viewed by 411
Abstract
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has [...] Read more.
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has not been thoroughly investigated—especially in developing nations where treatment expenses frequently impede actual implementation, even for non-structural uses. While prior research has focused on treated wastewater, the potential of untreated or partially treated wastewater from diverse industrial sources remains underexplored. This study investigates the feasibility of incorporating wastewater from textile, sugar mill, service station, sewage, and fertilizer industries into concrete paver block production. The novelty lies in a dual approach, combining experimental analysis with XGBoost-based machine learning (ML) models to predict the impact of key physicochemical parameters—such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Hardness—on mechanical properties like compressive strength (CS), water absorption (WA), ultrasonic pulse velocity (UPV), and dynamic modulus of elasticity (DME). The ML models showed high predictive accuracy for CS (R2 = 0.92) and UPV (R2 = 0.97 direct, 0.99 indirect), aligning closely with experimental data. Notably, concrete pavers produced with textile (CP-TXW) and sugar mill wastewater (CP-SUW) attained 28-day compressive strengths of 47.95 MPa and exceeding 48 MPa, respectively, conforming to ASTM C936 standards and demonstrating the potential to substitute fresh water for non-structural applications. These findings demonstrate the viability of using untreated wastewater in concrete production with minimal treatment, offering a cost-effective, sustainable solution that reduces fresh water dependency while supporting environmentally responsible construction practices aligned with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Additionally, the model serves as a practical screening tool for identifying and prioritizing viable wastewater sources in concrete production, complementing mandatory laboratory testing in industrial applications. Full article
Show Figures

Figure 1

24 pages, 2229 KiB  
Article
Effect of Mixing Technology on Homogeneity and Quality of Sodium Naproxen Tablets: Technological and Analytical Evaluation Using HPLC Method
by Mateusz Przywara, Regina Lech-Przywara, Patrycja Rupar and Wojciech Zapała
Molecules 2025, 30(15), 3119; https://doi.org/10.3390/molecules30153119 - 25 Jul 2025
Viewed by 315
Abstract
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the [...] Read more.
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the physical properties and content uniformity of naproxen sodium tablets. Blends consisting of naproxen sodium, cellulose, PVP, calcium carbonate, and magnesium stearate were prepared under varied mixing intensities and characterized in terms of flowability, compressibility, and particle size distribution. The resulting tablets were analyzed for weight, thickness, hardness, friability, and API content using a simplified bypass HPLC method. The V-type mixer yielded tablets with the most consistent weight and thickness, despite the poorest blend flow properties. Vibratory milling produced the hardest tablets and best API content uniformity, although high-energy processing introduced variability at longer mixing times. The analytical method proved fast and robust, allowing for reliable API quantification without full chromatographic separation. These findings underscore the need to balance mechanical blending energy with formulation properties and support the use of streamlined analytical strategies in pharmaceutical development. Full article
Show Figures

Figure 1

12 pages, 7595 KiB  
Article
Reactive Sintering of Cemented Carbides
by Victor I. Stanciu, Alexandre Mégret, Anne Mouftiez, Véronique Vitry and Fabienne Delaunois
Alloys 2025, 4(3), 15; https://doi.org/10.3390/alloys4030015 - 25 Jul 2025
Viewed by 132
Abstract
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing [...] Read more.
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing tungsten carbide involves reducing tungsten oxide, followed by carburization of tungsten at 1400 °C under a hydrogen atmosphere. The tungsten carbide produced is then mixed with the binder, milled to achieve the desired particle size, and granulated to ensure proper flow for pressing and shaping. This study aims to bypass the tungsten carburizing step by mixing tungsten, carbon, and cobalt; shaping the mixture; and then applying reactive sintering, which will convert tungsten into carbide and consolidate the parts. The mixtures were prepared by planetary ball milling for 10 h under different conditions. Tests demonstrated that tungsten carburization successfully occurs during sintering at 1450 °C for 1 h. The samples exhibit a typical cemented carbide microstructure, characterized by prismatic grains with an average size of 0.32 μm. Densification reached 92%, hardness is approximately 1800 HV30, and toughness is 10.9 ± 1.15 MPa·m1/2. Full article
(This article belongs to the Special Issue New Alloys for Surface Engineered Coatings, Interfaces and Films)
Show Figures

Figure 1

22 pages, 2408 KiB  
Article
Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits
by Berenice Karina Flores-Hernández, Ma. de Lourdes Arévalo-Galarza, Manuel Livera-Muñoz, Cecilia Peña-Valdivia, Aída Martínez-Hernández, Guillermo Calderón-Zavala and Guadalupe Valdovinos-Ponce
Foods 2025, 14(14), 2546; https://doi.org/10.3390/foods14142546 - 21 Jul 2025
Viewed by 322
Abstract
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in [...] Read more.
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in the pericarpel. Recently, by inducing parthenocarpy, seedless fruits of cactus pear have been obtained. They have attractive colors, soft and small seminal residues, with a similar flavor to their original seeded counterparts. Nevertheless, their postharvest physiological behavior has not yet been documented. The aim of this study was to compare the biochemical, anatomical, and physiological characteristics of pollinated fruits, CP30 red and CP40 yellow varieties, with their parthenocarpic counterparts (CP30-P and CP40-P), obtained by the application of growth regulators in preanthesis. Fruits of each type were harvested at horticultural maturity, and analyses were carried out on both pulp and pericarpel (peel), using a completely randomized design. Results showed that red fruits CP30 and CP30-P showed higher concentrations of betacyanins in pulp (13.4 and 18.4 mg 100 g−1 FW) and in pericarpel (25.9 and 24.1 mg 100 g−1 FW), respectively; flavonoid content was significantly higher in partenocarpic fruits compared with the pollinated ones. Parthenocarpy mainly affected the shelf life, in pollinated fruits, CP30 was 14 days but 32 days in CP30-P; for CP40, it was 16 days, and 30 days in CP40-P. Also, the partenocarpic fruits were smaller but with a thicker pericarpel, and lower stomatal frequency. Overall, parthenocarpic fruits represent a viable alternative for commercial production due to their extended shelf life, lower weight loss, and soft but edible pericarpel. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 228
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 542 KiB  
Article
Elucidation of Nutritional Quality, Antinutrients, and Protein Digestibility of Dehulled and Malted Flours Produced from Three Varieties of Bambara Groundnut (Vigna subterranean)
by Mpho Edward Mashau, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Foods 2025, 14(14), 2450; https://doi.org/10.3390/foods14142450 - 12 Jul 2025
Viewed by 404
Abstract
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This [...] Read more.
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This study investigated the impact of dehulling and malting on the nutritional composition, antinutritional factors, and protein digestibility of flours obtained from three BGN varieties (red, cream, and brown). Dehulling and malting significantly enhanced the moisture and protein content of BGN flours (dry basis), with values varying from 6.01% (control brown variety) to 8.71% (malted cream and brown varieties), and from 18.63% (control red variety) to 21.87% (dehulled brown), respectively. Dehulling increased the fat content from 5.82% (control red variety) to 7.84% (dehulled cream), whereas malting decreased the fat content. Nevertheless, malting significantly increased (p < 0.05) the fiber content from 4.78% (control cream) to 8.28% (malted brown variety), while dehulling decreased the fiber content. Both processing methods decreased the ash and carbohydrate contents of the BGN flours. Dehulling and malting significantly enhanced the amino acids of BGN flours, except for tryptophan and asparagine. Dehulling and malting notably increased the phosphorus, magnesium, potassium, and sulfur contents of the BGN flours, while calcium and zinc were reduced. Malting significantly enhanced the iron content of BGN flour, whereas dehulling reduced it. Both processing methods significantly enhanced palmitic, arachidic, and y-Linolenic acids. Nonetheless, processing methods significantly reduced phytic acid and oxalate, and dehulling achieved the most significant reductions. Dehulling and malting significantly enhanced the protein digestibility of the BGN flours from 69.38 (control red variety) to 83.29 g/100 g (dehulled cream variety). Overall, dehulling and malting enhanced the nutritional quality and decreased the antinutritional factors of BGN flours. Full article
Show Figures

Figure 1

19 pages, 4606 KiB  
Article
Corrosion Behavior of MgTiZn and Mg4TiZn Alloys After Ball Milling and Subsequent Spark Plasma Sintering
by Alexander Helmer, Rahul Agrawal, Manoj Mugale, Tushar Borkar and Rajeev Gupta
Materials 2025, 18(14), 3279; https://doi.org/10.3390/ma18143279 - 11 Jul 2025
Cited by 1 | Viewed by 381
Abstract
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark [...] Read more.
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark plasma sintering, focusing on their microstructures and corrosion behaviors. X-ray diffraction and transmission electron microscopy revealed the formation of intermetallic phases, including Ti2Zn and Mg21Zn25 in TZ, while 4TZ exhibited a predominantly Mg-rich phase. Potentiodynamic polarization and immersion tests in 0.1 M NaCl solution showed that both alloys had good corrosion resistance, with values of 3.65 ± 0.65 µA/cm2 for TZ and 4.58 ± 1.64 µA/cm2 for 4TZ. This was attributed to the formation of a TiO2-rich surface film in the TZ, as confirmed by X-ray photoelectron spectroscopy (XPS), which contributed to enhanced passivation and lower corrosion current density. Both alloys displayed high hardness, 5.5 ± 1.0 GPa for TZ and 5.1 ± 0.9 GPa for 4TZ, and high stiffness, with Young’s modulus values of 98.2 ± 11.2 GPa for TZ and 100.8 ± 9.6 GPa for 4TZ. These findings highlight the potential of incorporating Ti and Zn via mechanical alloying to improve the corrosion resistance of Mg-containing MPEAs and Mg-based alloys. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

20 pages, 3348 KiB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 335
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

15 pages, 4232 KiB  
Article
The Growth Kinetic and Ultra High Hardness of CoCrFeNiTi High–Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering
by Tiejun Qu, Mingpu Liu, Chuanhua Yang, Xin Wang and Junfa Wang
Materials 2025, 18(14), 3242; https://doi.org/10.3390/ma18143242 - 9 Jul 2025
Viewed by 385
Abstract
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for [...] Read more.
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for phase identification, scanning electron microscopy (SEM) for surface morphology observation, transmission electron microscopy (TEM) for microstructural analysis, and hardness testing to evaluate mechanical performance. The milled powder exhibited nanocrystalline solid solution microstructure with grain sizes below 48 nm, composed of 83% face–centered cubic (FCC) and 17% body–centered cubic (BCC) phases. Mechanically, the bulk CoCrFeNiTi alloy exhibited exceptional strength attributes, as evidenced by a Vickers hardness value reaching 675 Hv, along with a compressive strength of 1894 MPa and a yield stress of 1238 MPa. These findings suggested that the synergistic effects of mechanical alloying and SPS processing can precisely control the phase stability, microstructure refinement, and property optimization in CoCrFeNiTi HEA, with particular promise for advanced structural applications. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

17 pages, 1915 KiB  
Article
Optimizing Nutrition Protocols for Improved Rice Yield, Quality, and Nitrogen Use Efficiency in Coastal Saline Soils
by Xiang Zhang, Xiaoyu Geng, Yang Liu, Lulu Wang, Jizou Zhu, Weiyi Ma, Xiaozhou Sheng, Lei Shi, Yinglong Chen, Pinglei Gao, Huanhe Wei and Qigen Dai
Agronomy 2025, 15(7), 1662; https://doi.org/10.3390/agronomy15071662 - 9 Jul 2025
Viewed by 277
Abstract
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application [...] Read more.
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application amount) in coastal saline soils. A two-year field experiment (2023–2024) was conducted using two rice varieties (Nanjing 5718 and Yongyou 4953) under four nitrogen treatments: N0 (no nitrogen fertilization), N1 (270 kg·hm−2, with a ratio of 5:1:2:2 at 1-day before transplanting, 7-day after transplanting, panicle initiation, and penultimate-leaf appearance stage, respectively), N2 (270 kg·hm−2, one-time application at 1-day before transplanting as 50% CRF with 80-day release period + 50% urea), and N3 (270 kg·hm−2, 50% one-time application of CRF with 120-day release period at the seedling stage + 50% urea at 1-day before transplanting). Compared with N1, the N3 treatment significantly increased grain yield by 10.2% to 12.9% and improved ANUE by 18.5% to 51.6%. It also improved processing quality (higher brown rice, milled rice, and head rice rates), appearance quality (reduced chalkiness degree and chalky rice percentage), and taste value (by 19.3% to 31.2%). These improvements were associated with lower amylose, protein, and soluble sugar contents and favorable changes in starch composition and pasting properties. While N2 slightly improved some quality traits, it significantly reduced yield and ANUE. Correlation analysis revealed that starch and protein composition, as well as pasting properties, were significantly associated with taste value and related attributes such as appearance, stickiness, balance degree, and hardness. Overall, one-time application of CRF with a 120-day release period at the seedling stage, combined with basal urea, offers an effective strategy to boost yield, quality, and ANUE in coastal saline rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 3979 KiB  
Article
Properties of Selected Additive Materials Used to Increase the Lifetime of Tools for Crushing Unwanted Growths Using Hardfacing by Welding Technology
by Miroslava Ťavodová, Monika Vargová, Dana Stančeková, Anna Rudawska and Arkadiusz Gola
Materials 2025, 18(13), 3188; https://doi.org/10.3390/ma18133188 - 5 Jul 2025
Viewed by 319
Abstract
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their [...] Read more.
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their face and back. At the same time, however, care must be taken to ensure that the shape and weight of the tool is not altered after the additive has been hardfaced on. Thus, the tool was first modified by removing the material by milling from the face and back. Subsequently, two surfacing materials, namely UTP 690 and OK WearTrode 55, were chosen and hardfaced by welding onto the pre-prepared surfaces. After hardfacing by welding, the tools were ground to their original shape and their weight was measured. Subsequently, the tool was sawn, and specimens were created for Rockwell hardness evaluation, material microstructure and for abrasive wear resistance testing as per ASTM G133-95. The OK WearTrode 55 electrode is a hardfacing electrode that produces weld metal with a high-volume fraction of fine carbides in a martensitic matrix. Better results were achieved by the UTP 690 hardfacing material. The hardness was 3.1 times higher compared to the base tool material 16MnCr5 and 1.2 times higher than the OK WearTrode 55 material. The abrasive wear resistance was 2.76 times higher compared to 16MnCr5, and 1.14 times higher compared to the OK WearTrode 55 material. The choice of a suitable pre-treatment for the tool and the selection and application of such additional material, which with its complex properties better resists the effects of the working environment, is a prerequisite for increasing the service life of tools working in forestry. Full article
Show Figures

Figure 1

13 pages, 3443 KiB  
Article
Influence of Wear-Induced Turning on the Roll’s Fatigue Life
by Francisko Lukša, Željko Domazet, Đorđe Dobrota and Branko Lalić
Metals 2025, 15(7), 730; https://doi.org/10.3390/met15070730 - 29 Jun 2025
Viewed by 264
Abstract
Friction-induced wear during the rolling process needs periodic remachining of caliber roll grooves, which increases operational costs and reduces roll fatigue life. Stress analysis showed that a regular reduction in the initial diameter by up to 3.5% results in a 12.2% increase in [...] Read more.
Friction-induced wear during the rolling process needs periodic remachining of caliber roll grooves, which increases operational costs and reduces roll fatigue life. Stress analysis showed that a regular reduction in the initial diameter by up to 3.5% results in a 12.2% increase in maximum stress amplitude, reducing the estimated fatigue life by a factor of 1.5. Although fatigue life is reduced, the risk of failure under normal operating conditions remains low. Further analysis, considering mill design and roll hardness, demonstrated the feasibility of additional roll diameter reduction, thereby enabling increased production using the same rolls. The findings support further diameter reduction without compromising performance and underscore the importance of integrating such analysis into the roller design process to optimize fatigue life and roll utilization. Full article
(This article belongs to the Special Issue Tribological Property and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

22 pages, 8571 KiB  
Article
Optimization of Micro-Sandblasting Parameters for Enhanced Adhesion and Wear Resistance of AlTiSiN-Coated Tools
by Junlong Wang, Jiaxuan Du, Zhipeng Liu, Hongliang Qian and Qi Wang
Coatings 2025, 15(7), 757; https://doi.org/10.3390/coatings15070757 - 26 Jun 2025
Viewed by 389
Abstract
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), [...] Read more.
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), and tool rotation speed (20, 30, and 40 r/min). Coating thickness varied only from 0.93 to 1.19 μm, and surface roughness remained within 0.044–0.077 μm, confirming negligible thickness and roughness effects. Under optimized conditions, coating adhesion strength and nano-hardness both exhibited significant improvements. A weighted-scoring method balancing these two responses identified the optimal pretreatment parameters as 0.1 MPa, 80 m/min, and 20 r/min. Milling tests at 85 m/min—using flank wear VBₘₐₓ = 0.1 mm as the failure criterion—demonstrated a cutting distance increase from 4.25 m (untreated) to 12.75 m (pretreated), a 200% improvement. Wear progressed through three stages: rapid initial wear, extended steady wear due to Al2O3 protective-film formation and Si-induced oxygen-diffusion suppression, and accelerated wear. Micro-sandblasting further prolonged the steady-wear phase by removing residual cobalt binder, exposing WC grains, and offsetting tensile residual stresses. These findings establish a practical, cost-effective micro-sandblasting pretreatment strategy that significantly enhances coating adhesion, hardness, and tool life, providing actionable guidance for improving the durability and machining performance of coated carbide tools in difficult-to-cut applications. Full article
Show Figures

Figure 1

17 pages, 4407 KiB  
Article
Effect of T6 and T8 Ageing on the Mechanical and Microstructural Properties of Graphene-Reinforced AA2219 Composites for Hydrogen Storage Tank Inner Liner Applications
by Bharathiraja Parasuraman, Ashwath Pazhani, Anthony Xavior Michael, Sudhagar Pitchaimuthu and Andre Batako
J. Compos. Sci. 2025, 9(7), 328; https://doi.org/10.3390/jcs9070328 - 25 Jun 2025
Viewed by 388
Abstract
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% [...] Read more.
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% graphene nanoplatelets and minimise agglomeration. The composites were subjected to T6 and T8 ageing treatments to optimize their properties. Microstructural analysis revealed refined grains, uniform Al2Cu precipitate distribution, and stable graphene retention. Mechanical testing showed that the as-cast composite exhibited a UTS of 308.6 MPa with 13.68% elongation. After T6 treatment, the UTS increased to 353.6 MPa with an elongation of 11.24%. T8 treatment further improved the UTS to 371.5 MPa, with an elongation of 8.54%. Hardness improved by 46%, from 89.6 HV (as-cast) to 131.3 HV (T8). Fractography analysis indicated a shift from brittle to ductile fracture modes after heat treatment. The purpose of this work is to develop lightweight, high-strength composites for hydrogen storage applications. The novelty of this study lies in the integrated processing approach, which ensures uniform graphene dispersion and superior mechanical performance. The results demonstrate the suitability of these composites for advanced aerospace propulsion systems. Full article
(This article belongs to the Special Issue Composite Materials for Hydrogen Storage)
Show Figures

Figure 1

Back to TopTop