Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = hand arm vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2009 KB  
Article
Tool Wear Prediction Using Machine-Learning Models for Bone Drilling in Robotic Surgery
by Shilpa Pusuluri, Hemanth Satya Veer Damineni and Poolan Vivekananda Shanmuganathan
Automation 2025, 6(4), 59; https://doi.org/10.3390/automation6040059 - 16 Oct 2025
Viewed by 972
Abstract
Bone drilling is a widely encountered process in orthopedic surgeries and keyhole neuro surgeries. We are developing a sensor-integrated smart end-effector for drilling for robotic surgical applications. In manual surgeries, surgeons assess tool wear based on experience and force perception. In this work, [...] Read more.
Bone drilling is a widely encountered process in orthopedic surgeries and keyhole neuro surgeries. We are developing a sensor-integrated smart end-effector for drilling for robotic surgical applications. In manual surgeries, surgeons assess tool wear based on experience and force perception. In this work, we propose a machine-learning (ML)-based tool condition monitoring system based on multi-sensor data to preempt excessive tool wear during drilling in robotic surgery. Real-time data is acquired from the six-component force sensor of a collaborative arm along with the data from the temperature and multi-axis vibration sensor mounted on the bone specimen being drilled upon. Raw data from the sensors may have noises and outliers. Signal processing in the time- and frequency-domain are used for denoising as well as to obtain additional features to be derived from the raw sensory data. This paper addresses the challenging problem of identification of the most suitable ML algorithm and the most suitable features to be used as inputs to the algorithm. While dozens of features and innumerable machine learning and deep learning models are available, this paper addresses the problem of selecting the most relevant features, the most relevant AI models, and the optimal hyperparameters to be used in the AI model to provide accurate prediction on the tool condition. A unique framework is proposed for classifying tool wear that combines machine learning-based modeling with multi-sensor data. From the raw sensory data that contains only a handful of features, a number of additional features are derived using frequency-domain techniques and statistical measures. Using feature engineering, we arrived at a total of 60 features from time-domain, frequency-domain, and interaction-based metrics. Such additional features help in improving its predictive capabilities but make the training and prediction complicated and time-consuming. Using a sequence of techniques such as variance thresholding, correlation filtering, ANOVA F-test, and SHAP analysis, the number of features was reduced from 60 to the 4 features that will be most effective in real-time tool condition prediction. In contrast to previous studies that only examine a small number of machine learning models, our approach systematically evaluates a wide range of machine learning and deep learning architectures. The performances of 47 classical ML models and 6 deep learning (DL) architectures were analyzed using the set of the four features identified as most suitable. The Extra Trees Classifier (an ML model) and the one-dimensional Convolutional Neural Network (1D CNN) exhibited the best prediction accuracy among the models studied. Using real-time data, these models monitored the drilling tool condition in real-time to classify the tool wear into three categories of slight, moderate, and severe. Full article
Show Figures

Figure 1

18 pages, 1942 KB  
Article
Research on Active Suppression Methods for End-Effector Residual Vibration of Heavy-Load Collaborative Robots in Arbitrary Poses
by Ran Shi, Shengsi Fan, Zhibin Li and Yunjiang Lou
Appl. Sci. 2025, 15(18), 10011; https://doi.org/10.3390/app151810011 - 12 Sep 2025
Viewed by 684
Abstract
Heavy-load collaborative robots are increasingly used in fields such as industrial handling and precision assembly. With the increase in the end load of the robotic arm and the acceleration of its movement speed, after the robotic arm completes a preset trajectory, due to [...] Read more.
Heavy-load collaborative robots are increasingly used in fields such as industrial handling and precision assembly. With the increase in the end load of the robotic arm and the acceleration of its movement speed, after the robotic arm completes a preset trajectory, due to factors such as inertia, the flexibility of the robotic arm’s rods and the harmonic reducer materials at the joints, there will still be residual vibration for a period of time after the robotic arm reaches the end point. On the one hand, residual vibration will have an adverse impact on the high-precision and high-performance operations of the robotic arm, affecting the operation accuracy and thus the production quality. On the other hand, many operations need to wait until the robotic arm completely stops before proceeding. In practical applications, the time spent waiting for the robotic arm to stop significantly affects efficiency. Therefore, effectively suppressing residual vibration is crucial to improving the performance of the robotic arm. To solve the problem of end residual vibration in heavy-load six-axis collaborative robots, this paper conducts research on input shaping and the estimation of robot end vibration parameters in arbitrary poses. The innovation is that vibration parameters in arbitrary poses are estimated based on the established vibration parameter model. An input shaper is designed according to the derived design method of the input shaper, achieving a certain suppression effect on the residual vibration of the robot end. When the parameter identification error is small, the optimized vibration suppression effect reaches more than 70%, realizing rapid and robust vibration suppression. This research is of great significance for enhancing the application value of collaborative robots in precision manufacturing and heavy-duty handling. Full article
Show Figures

Figure 1

16 pages, 332 KB  
Article
The Association Between Vibrotactile and Thermotactile Perception Thresholds and Personal Risk Factors in Workers Exposed to Hand-Transmitted Vibration
by Fabiano Barbiero, Andrea Miani, Marcella Mauro, Flavia Marrone, Enrico Marchetti, Francesca Rui, Angelo Tirabasso, Carlotta Massotti, Marco Tarabini, Francesca Larese Filon and Federico Ronchese
Vibration 2025, 8(3), 36; https://doi.org/10.3390/vibration8030036 - 4 Jul 2025
Viewed by 1019
Abstract
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal [...] Read more.
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal risk factors and, particularly regarding neurosensory dysfunction. This study aimed to examine the association between vibrotactile (VPT) and thermotactile perception thresholds (TPT) and individual risk factors and comorbidities in HTV-exposed workers. Methods: A total of 235 male HTV workers were evaluated between 1995 and 2005 at the University of Trieste’s Occupational Medicine Unit. Personal, occupational, and health-related data were collected, and sensory function was assessed in both hands. VPTs at 31.5 and 125 Hz and TPTs (for warm and cold) were measured on fingers innervated by the median and ulnar nerves. Results: Multivariable regression analysis revealed that impaired VPTs were significantly associated with age, higher daily vibration exposure (expressed as 8 h energy-equivalent A(8) values), BMI ≥ 25, smoking, vascular/metabolic disorders, and neurosensory symptoms. In contrast, TPTs showed weaker and less consistent associations, with some links to smoking and alcohol use. Conclusions: These findings suggest that, in addition to vibration exposure, individual factors such as aging, overweight, smoking, and underlying health conditions significantly contribute to neurosensory impairment and may exacerbate neurosensory dysfunction in a context of HAVS. The results underscore the importance of including personal health risk factors in both clinical assessment and preventive strategies for HAVS and may inform future research on its pathogenesis. Full article
16 pages, 3382 KB  
Article
Damping Rates of Anti-Vibration Gloves Made of Different Materials
by İlknur Erol
Appl. Sci. 2025, 15(12), 6630; https://doi.org/10.3390/app15126630 - 12 Jun 2025
Viewed by 1058
Abstract
The transmission of vibrations generated by high-powered machines to the hands can lead to serious health problems and various work-related difficulties for the operators. These issues result in a loss of workforce and increased operational costs due to compensation payments made to affected [...] Read more.
The transmission of vibrations generated by high-powered machines to the hands can lead to serious health problems and various work-related difficulties for the operators. These issues result in a loss of workforce and increased operational costs due to compensation payments made to affected workers. Exposure to hand–arm vibration can be controlled through the use of vibration damping gloves. In this study, the hand–arm vibration exposure of operators using a jackhammer in three different mines was measured with and without gloves, and the vibration damping ratio of each glove was calculated. One-way analysis of variance was performed to determine the difference between the vibration damping ratios (%) obtained from three separate field measurements of 12 different gloves, and significant differences were detected. In addition, vibration exposure was measured with and without gloves for operators using a vibrating sieve set with standard vibration in a laboratory environment. From both the field and laboratory measurements, the gloves made of chloroprene rubber provide the most effective protection. Full article
Show Figures

Figure 1

22 pages, 10014 KB  
Article
Analysis of the Impact of Vibrations on the Driver of a Motor Vehicle
by Lukasz Konieczny, Pawel Fabis, Jonas Matijošius, Kamil Duda, Piotr Deuszkiewicz and Arturas Kilikevičius
Appl. Sci. 2025, 15(10), 5510; https://doi.org/10.3390/app15105510 - 14 May 2025
Cited by 1 | Viewed by 3726
Abstract
Vibration can have a significant impact on long-term health, driver comfort, and vehicle performance. With a focus on steering wheel vibrations, this study examines both general and local vibrations that affect the driver. Under real-world conditions, a series of controlled test drives were [...] Read more.
Vibration can have a significant impact on long-term health, driver comfort, and vehicle performance. With a focus on steering wheel vibrations, this study examines both general and local vibrations that affect the driver. Under real-world conditions, a series of controlled test drives were conducted, with high-precision accelerometers mounted on the driver’s seat and steering wheel recording vibration data. The measurements were conducted in accordance with ISO 5349 and ISO 2631-1, which guaranteed a consistent assessment of vibration exposure. The results suggest that the daily vibration exposure for general vibrations at the driver’s seat is significantly lower than the legal limit, as evidenced by the presence of significant frequencies in the vertical (Z) axis. Nevertheless, steering wheel vibrations may cause pain due to their proximity to the resonance frequencies of the human hand–arm system, which have frequency maxima at approximately 35 Hz and harmonic 70 Hz. Additionally, the vibration intensity was elevated at vehicle velocities between 70 and 80 km/h, suggesting the potential presence of a resonance effect within the suspension or powertrain. The results emphasize the significance of advanced vibration reduction strategies in enhancing driver comfort and safety, including the implementation of a well-designed steering system and enhanced seat absorption. This research offers valuable insights for automotive engineers and ergonomics specialists who are interested in minimizing long-term health risks and vibration-induced fatigue. The aim of this study is to indicate the areas of the drive system fault that have a direct impact on the vibrations of the body structure. The article presents an analysis of the recorded vibration results based on which of the areas of change in the comfort of using the vehicle were selected. Full article
(This article belongs to the Special Issue Innovative Research on Transportation Means)
Show Figures

Figure 1

26 pages, 12687 KB  
Article
Operator Exposure to Vibration and Noise During Steep Terrain Harvesting
by Luka Pajek, Marijan Šušnjar and Anton Poje
Forests 2025, 16(5), 741; https://doi.org/10.3390/f16050741 - 25 Apr 2025
Cited by 1 | Viewed by 944
Abstract
Winch-assisted harvesting has expanded considerably in recent years as it enables ground-based machines to work safely on steep slopes. To analyze operator exposure to whole-body and hand–arm vibration (WBV, HAV) and noise exposure (LAeq, LCpeak) during winch-assisted harvesting (TW) [...] Read more.
Winch-assisted harvesting has expanded considerably in recent years as it enables ground-based machines to work safely on steep slopes. To analyze operator exposure to whole-body and hand–arm vibration (WBV, HAV) and noise exposure (LAeq, LCpeak) during winch-assisted harvesting (TW) and harvesting without winch assistance (NTW), a field study using a Ponsse Scorpion King harvester and an Ecoforst T-winch traction winch was conducted. Vibrations were measured at three locations inside the cabin (seat, seat base/floor, control lever), while noise exposure was recorded both inside and outside the cabin. WBV exposure during work time operations was highest in the Y-direction, both on the seat (0.49–0.87 m/s2) and on the floor (0.41–0.84 m/s2). The WBV and HAV exposure levels were highest while driving on the forest and skid road. Exposure during the main productive time was significantly influenced by the harvesting system, diameter at breast height (DBH), and tree species. Noise exposure was higher, while WBV and HAV exposures on the seat, floor and control lever were lower during non-work time than during work time. The daily vibration exposure on the seat exceeded the EU action value, while LCpeak noise exposure surpassed the limit value of 140 dB(C) on all measured days. Noise and vibration exposure were constantly higher during TW than NTW harvesting but differences were small. Compared to other studies, the results show that harvesting on steep terrain increases noise and vibration exposure, while non-work time has the opposite effect on vibration and noise exposure. Full article
(This article belongs to the Special Issue Addressing Forest Ergonomics Issues: Laborers and Working Conditions)
Show Figures

Figure 1

18 pages, 7771 KB  
Article
Novel Smart Glove for Ride Monitoring in Light Mobility
by Michela Borghetti, Nicola Francesco Lopomo and Mauro Serpelloni
Instruments 2025, 9(1), 6; https://doi.org/10.3390/instruments9010006 - 18 Mar 2025
Cited by 1 | Viewed by 2915
Abstract
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting [...] Read more.
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting vibrations play key roles. Wearable systems offer the ability to noninvasively monitor physiological parameters, such as body temperature and heart rate, aiding in personalized comfort assessment. In this context, user positions while driving or riding are, on the other hand, more challenging to monitor ecologically. Developing effective smart gloves as a support for comfort and movement monitoring introduces technical complexities, particularly in sensor selection and integration. Light and flexible sensors can help in this regard by ensuring reliable sensing and thus addressing the optimization of the comfort for the driver. In this work, a novel wireless smart glove is proposed, integrating four bend sensors, four force-sensitive sensors, and one inertial measurement unit for measuring the finger movements, hand orientation, and the contact force exerted by the hand while grasping the handlebar during driving or riding. The smart glove has been proven to be repeatable (1.7%) and effective, distinguishing between different grasped objects, such as a flask, a handlebar, a tennis ball, and a small box. Additionally, it proved to be a valuable tool for monitoring specific actions while riding bicycles, such as braking, and for optimizing the posture during the ride. Full article
Show Figures

Figure 1

26 pages, 4676 KB  
Article
The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP)
by Željko Barač, Ivan Plaščak, Tomislav Jurić and Monika Marković
AgriEngineering 2025, 7(3), 56; https://doi.org/10.3390/agriengineering7030056 - 24 Feb 2025
Cited by 4 | Viewed by 1238
Abstract
This paper presents research on the impact of vibrations on the hand–arm and body system of agricultural tractor operators as ergonomic indicators in relation to certain operational parameters. The measurements were conducted on a LANDINI POWERFARM 100 tractor on agricultural production areas and [...] Read more.
This paper presents research on the impact of vibrations on the hand–arm and body system of agricultural tractor operators as ergonomic indicators in relation to certain operational parameters. The measurements were conducted on a LANDINI POWERFARM 100 tractor on agricultural production areas and access roads of the Agricultural and Veterinary School in Osijek. The measurements followed the ISO 5008:2015 standard, which describes the creation of test tracks: a smooth track of 100 m in length and a rough track of 35 m in length. Body vibration measurements were conducted according to the prescribed standards HRN ISO 2631-1: 1999/A1:2019 and HRN ISO 2631-4:2010. Hand–arm system vibration measurements were performed according to the prescribed standards HRN ISO 5349-1:2008 and HRN ISO 5349-2:2008/A1:2015. After the measured data were processed, a three-factor analysis of variance was performed, where some operational parameters were designated as A—agrotechnical surfaces (6 types), B—tractor speed (6 speeds), and C—tire air pressure (3 pressures), along with multiple regression analysis and the AHP (analytical hierarchical process). This research determined that none of the measured hand–arm system vibrations exceeded the warning (2.5 ms−2) or limit (5 ms−2) values of daily exposure. Furthermore, vibrations affecting the operator’s body in the x-axis at higher speeds and pressures C2 and C3, in the y-axis at higher speeds and pressures C1 and C2, and in the z-axis at the highest speed and pressures C1 and C2 were found to exceed the daily exposure warning value of 0.5 ms−2. It was concluded that the operator’s health is at risk, and it is recommended that the seat’s air suspension system be inspected to prevent further complications in a timely manner. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

15 pages, 1247 KB  
Article
Frequency-Range-Specific Hand–Arm Vibration Exposure and the Risk of Musculoskeletal Disorders of the Upper Extremities: The German Hand–Arm Vibration Study
by Yi Sun, Frank Bochmann, Winfried Eckert, Uwe Nigmann, Christian van den Berg, Uwe Kaulbars and Nastaran Raffler
Vibration 2025, 8(1), 6; https://doi.org/10.3390/vibration8010006 - 16 Feb 2025
Cited by 1 | Viewed by 2256
Abstract
To quantify the effect of frequency-range-specific hand–arm vibration (FRS-HAV) exposure on the risk of musculoskeletal disorders of the upper limb (UMSDs), we performed an analysis among the study sample of the German Hand–Arm Vibration Study. In total, 206 cases and 609 controls were [...] Read more.
To quantify the effect of frequency-range-specific hand–arm vibration (FRS-HAV) exposure on the risk of musculoskeletal disorders of the upper limb (UMSDs), we performed an analysis among the study sample of the German Hand–Arm Vibration Study. In total, 206 cases and 609 controls were included in this analysis. Cases were new patients with UMSDs. Controls were a random sample of people with compensable occupational injuries. Standardized personal interviews were performed among cases and controls. In addition to leisure activities and comorbidities, detailed work histories were obtained from all participants. To quantify FRS-HAV exposures, a database of vibration measurements of over 700 power tools was used. This database allows detailed quantification of vibration exposure over long periods of time. A dose–response relationship between FRS-HAV exposure and UMSDs was quantified using conditional logistic regression analyses. After adjustment for relevant confounders, consistent and statistically significant exposure–response relationships were observed between cumulative vibration exposure and UMSDs. The effect of vibration exposure on the risk of UMSDs is mainly concentrated in the frequency range ≤ 50 Hz. This suggests that the current ISO frequency-weighting curve for quantifying hand–arm vibration exposure is reasonable and can be used for vibration-related risk assessment, especially for musculoskeletal disorders. Full article
Show Figures

Figure 1

32 pages, 4716 KB  
Review
A Chronological Review of the Transmission and Effects of Mechanical Vibrations on the Hand—Arm System in an Occupational Workplace
by Aurora Felicia Cristea, Monica Carmen Bӑlcӑu and Simion Haragâṣ
Appl. Sci. 2025, 15(3), 1182; https://doi.org/10.3390/app15031182 - 24 Jan 2025
Viewed by 2893
Abstract
This paper aims to review researchers’ concerns over time (from the 1980s to the present) regarding the transmission of mechanical vibrations in the workplace to the limbs, with a preponderant focus on the hand–arm system and some of the effects over time. These [...] Read more.
This paper aims to review researchers’ concerns over time (from the 1980s to the present) regarding the transmission of mechanical vibrations in the workplace to the limbs, with a preponderant focus on the hand–arm system and some of the effects over time. These concerns are strictly approached from the point of view of their effects on different races, types of jobs, and forms of tools handled in the workplace. In this regard, when we refer to unwanted vibrations (harmful to a person) in the industrial environment, these are vibrations that can produce harmful effects on an individual’s health, leading to occupational diseases such as white finger syndrome. Some of the terms specific to the studies reviewed, such as vibration perception and biodynamic force, among others, are explained in this paper as needed. Studies in the field have shown that vibrations are transmitted differently when the arm is bent at the elbow joint compared to when it is outstretched; also, the transmission of vibrations is influenced by other factors, such as the temperature of the working environment, the gender and age of the person who is using the vibrating devices, and last but not least, the time of their use and the frequency. The conclusions presented by the specialized literature often refer to existing standards, in particular SR EN ISO 5349/2003. Finally, in this paper, conclusions are drawn regarding how to analyze the transmission of vibrations over time, and some recommendations are given for avoiding or minimizing them, which can be added to the already-existing standards. Full article
(This article belongs to the Special Issue Predictive Analytics in Healthcare)
Show Figures

Figure 1

12 pages, 1631 KB  
Article
Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study
by Tom Le Solliec, Christophe Hautier, Robin Gassier, Robin Trama, Benoit Gilbert, Lin Song and Qingshan Zhang
Sensors 2024, 24(24), 7999; https://doi.org/10.3390/s24247999 - 14 Dec 2024
Cited by 1 | Viewed by 1938
Abstract
This study investigated muscle activation, shocks, and vibrations of the upper extremities during tennis serves between junior and adult tennis players. Thirty-five well-trained tennis players (15 juniors and 20 adults) performed 10 maximal successful tennis serves. Two triaxial accelerometers recorded the shock and [...] Read more.
This study investigated muscle activation, shocks, and vibrations of the upper extremities during tennis serves between junior and adult tennis players. Thirty-five well-trained tennis players (15 juniors and 20 adults) performed 10 maximal successful tennis serves. Two triaxial accelerometers recorded the shock and vibration on the racket and the hand on the dominant side. Eight surface EMG electrodes were also used to measure the arm muscles’ activities. Linear mixed models were used to test the fixed effect of age on muscular activation and vibration. Statistical non-Parametric Mapping was employed to make statistical inferences on the EMG and accelerometer data obtained from the continuous wavelet transform. Comparing EMG parameters between junior and adult players reveals similar upper limb intermuscular coordination. The junior players experienced lower racket and hand vibration amplitudes, which were partially explained by a lower ball velocity. This study revealed that young players showed no difference in EMG parameters in the tennis serve but were as exposed to shocks and vibrations as adults when compared based on a given speed and a given handgrip force. These vibrations apply to an immature skeleton, which can increase the risk of injuries caused by overuse. In addition, differences in the racket vibration frequency provide original knowledge to engineers who need to develop innovative sports equipment for tennis. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
Show Figures

Figure 1

12 pages, 2863 KB  
Article
The Effects of Adding TiO2 and CuO Nanoparticles to Fuel on Engine and Hand–Arm Driver Vibrations
by Ali Adelkhani, Peyman Nooripour and Ehsan Daneshkhah
Machines 2024, 12(10), 724; https://doi.org/10.3390/machines12100724 - 13 Oct 2024
Cited by 4 | Viewed by 2044
Abstract
Occupant comfort is a key consideration in automobile dynamics, with vibrations potentially causing long-term physical discomfort, especially for drivers. This study investigates the impact of adding TiO2 and CuO nanoparticles to fuel on engine-induced vibrations. Experiments were conducted at various nanoparticle concentrations [...] Read more.
Occupant comfort is a key consideration in automobile dynamics, with vibrations potentially causing long-term physical discomfort, especially for drivers. This study investigates the impact of adding TiO2 and CuO nanoparticles to fuel on engine-induced vibrations. Experiments were conducted at various nanoparticle concentrations (0, 50, 100, and 150 ppm) and engine speeds (1000, 2000, and 3000 rpm). Key performance metrics, including kinematic viscosity, density, heating value, thermal conductivity, and brake power (BP), were analyzed. The results indicated that increasing nanoparticle concentration led to a rise in BP. The highest reduction in root mean square (RMS) vibration accelerations occurred at 3000 rpm and 150 ppm, with vibration reductions of 30.33% for CuO and 28.61% for TiO2. Additionally, 8–10% of engine vibrations were transmitted to the steering wheel. The use of 150 ppm CuO nanoparticles resulted in reduced vibration transmission to the steering wheel at all tested speeds. These findings suggest that nanoparticle-enhanced fuels can significantly reduce engine vibrations, potentially improving driver comfort and reducing wear on vehicle components. Full article
(This article belongs to the Special Issue Vibration-Based Machines Wear Monitoring and Prediction)
Show Figures

Figure 1

10 pages, 497 KB  
Article
Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls
by Malin Zimmerman, Lisa Åselius, Erik Dahlin, Gert S. Andersson and Lars B. Dahlin
J. Clin. Med. 2024, 13(16), 4954; https://doi.org/10.3390/jcm13164954 - 22 Aug 2024
Viewed by 2269
Abstract
Objectives: Vibration exposure is a known risk factor for developing carpal tunnel syndrome (CTS), and insufficient outcomes for surgery for CTS have been reported after such exposure. We aim to investigate whether vibration exposure affects patient-reported outcomes following open carpal tunnel release. [...] Read more.
Objectives: Vibration exposure is a known risk factor for developing carpal tunnel syndrome (CTS), and insufficient outcomes for surgery for CTS have been reported after such exposure. We aim to investigate whether vibration exposure affects patient-reported outcomes following open carpal tunnel release. Methods: From a population surgically treated for CTS (n = 962), we identified patients who reported previous or present vibration exposure, had undergone preoperative electrophysiology testing and answered the Quick Disabilities of Arm, Shoulder and Hand (QuickDASH) questionnaire before and at 12 months post-surgery (n = 23). We then matched the patients with controls based on age, sex, diabetes status, type of diabetes and smoking (n = 23). Results: Most of the patients included were men (17/23; 74% in each group) and had a mean age of 61 years. The preoperative electrophysiology results were slightly worse among vibration-exposed individuals, although the differences were not statistically significant. The QuickDASH scores did not differ between the two groups (preoperative QuickDASH scores in vibration-exposed individuals: median 45 [interquartile range; IQR 30–61]; non-exposed individuals: 43 [25–64], p = 0.68; postoperative 12 months QuickDASH score in vibration-exposed individuals: 20 [2–45]; non-exposed individuals: 14 [5–34], p = 0.87). Conclusions: When controlling for known confounders, vibration-exposed individuals can expect the same symptom relief following open carpal tunnel release as non-exposed individuals. Individual assessments and treatment of CTS are warranted if there is a history of vibration exposure. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

16 pages, 3048 KB  
Article
Rat-Tail Models for Studying Hand-Arm Vibration Syndrome: A Comparison between Living and Cadaver Rat Tails
by Christopher M. Warren, Xueyan S. Xu, Mark Jackson, Walter G. McKinney, John Z. Wu, Daniel E. Welcome, Stacey Waugh, Phillip Chapman, Erik W. Sinsel, Samantha Service, Kristine Krajnak and Ren G. Dong
Vibration 2024, 7(3), 722-737; https://doi.org/10.3390/vibration7030038 - 10 Jul 2024
Viewed by 1766
Abstract
Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers [...] Read more.
Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers exposed to vibration and force when operating powered hand tools or workpieces. The biodynamic responses, such as vibration stress, strain, and power absorption density, of the rat tails can be used to help evaluate the health effects related to vibration and force and to establish a dose-effect relationship. While the biodynamic responses of cadaver rat tails have been investigated, the objective of the current study was to determine whether the biodynamic responses of living rat tails are different from those of cadaver rat tails, and whether the biodynamic responses of both living and cadaver tails change with exposure duration. To make direct comparisons, the responses of both cadaver and living rat tails were examined on four different testing stations. The transfer function of each tail under a given contact force (2 N) was measured at each frequency in the one-third octave bands from 20 to 1000 Hz, and used to calculate the mechanical system parameters of the tails. The transfer functions were also measured at different exposure durations to determine the time dependency of the response. Differences were observed in the vibration biodynamic responses between living and cadaver tails, but the general trends were similar. The biodynamic responses of both cadaver and living rat tails varied with exposure duration. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

11 pages, 5155 KB  
Article
Does the Workload Change When Using an Impact Wrench in Different Postures?—A Counter-Balanced Trial
by Nastaran Raffler, Thomas Wilzopolski, Christian Freitag and Elke Ochsmann
Vibration 2024, 7(2), 453-463; https://doi.org/10.3390/vibration7020024 - 9 May 2024
Cited by 1 | Viewed by 1526
Abstract
Awkward hand-arm posture and overhead work increase the risk of musculoskeletal symptoms. These adverse health effects can also be caused by additional workloads such as hand-arm vibration exposure while carrying or holding a power tool. This pilot trial investigated posture and muscle activity [...] Read more.
Awkward hand-arm posture and overhead work increase the risk of musculoskeletal symptoms. These adverse health effects can also be caused by additional workloads such as hand-arm vibration exposure while carrying or holding a power tool. This pilot trial investigated posture and muscle activity of 11 subjects while using an impact wrench for three working directions: upwards, forwards and downwards. Although the vibration exposure did not show notable differences in the magnitude (4.8 m/s2 upwards, 4.4 m/s2 forwards and 4.7 m/s2 downwards), postural behavior and the muscle activity showed significantly higher workloads for working upwards compared to forwards direction. The muscle activity results for working downwards also showed elevated levels of muscle activity due to the awkward wrist posture. The results demonstrate that not only the working direction but also more importantly the arm, wrist and head posture need to be considered while investigating hand-arm vibration exposure. Full article
Show Figures

Figure 1

Back to TopTop