Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = groundwater level fluctuation zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 30771 KiB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 350
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

21 pages, 3474 KiB  
Article
Characteristics and Mechanisms of the Impact of Heterogeneity in the Vadose Zone of Arid Regions on Natural Vegetation Ecology: A Case Study of the Shiyang River Basin
by Haohao Cui, Jinyu Shang, Xujuan Lang, Guanghui Zhang, Qian Wang and Mingjiang Yan
Sustainability 2025, 17(14), 6605; https://doi.org/10.3390/su17146605 - 19 Jul 2025
Viewed by 302
Abstract
As a critical link connecting groundwater and vegetation, the vadose zone’s lithological structural heterogeneity directly influences soil water distribution and vegetation growth. A comprehensive understanding of the ecological effects of the vadose zone can provide scientific evidence for groundwater ecological protection and natural [...] Read more.
As a critical link connecting groundwater and vegetation, the vadose zone’s lithological structural heterogeneity directly influences soil water distribution and vegetation growth. A comprehensive understanding of the ecological effects of the vadose zone can provide scientific evidence for groundwater ecological protection and natural vegetation conservation in arid regions. This study, taking the Minqin Basin in the lower reaches of China’s Shiyang River as a case, reveals the constraining effects of vadose zone lithological structures on vegetation water supply, root development, and water use strategies through integrated analysis, field investigations, and numerical simulations. The findings highlight the critical ecological role of the vadose zone. This role primarily manifests through two mechanisms: regulating capillary water rise and controlling water-holding capacity. They directly impact soil water supply efficiency, alter the spatiotemporal distribution of water deficit in the root zone, and drive vegetation to develop adaptive root growth patterns and stratified water use strategies, ultimately leading to different growth statuses of natural vegetation. During groundwater level fluctuations, fine-grained lithologies in the vadose zone exhibit stronger capillary water response rates, while multi-layered lithological structures (e.g., “fine-over-coarse” configurations) demonstrate pronounced delayed water release effects. Their effective water-holding capacities continue to exert ecological effects, significantly enhancing vegetation drought resilience. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 302
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

17 pages, 6277 KiB  
Article
Adapting Newly Constructed Well Depth to Groundwater Level Changes
by Baoqi Li, Yao Lu, Shaoxiong Zhang, Yanyu Chi, Hang Zhou, Ming Liu and Yi Guo
Water 2025, 17(14), 2066; https://doi.org/10.3390/w17142066 - 10 Jul 2025
Viewed by 271
Abstract
Groundwater is a vital resource for human activities, and its level changes influence the depth design and operation of wells. This study analyzed the Hebei Plain using 1127 boreholes to delineate aquifers I–IV via Kriging interpolation. Groundwater and wells were classified. Utilizing over [...] Read more.
Groundwater is a vital resource for human activities, and its level changes influence the depth design and operation of wells. This study analyzed the Hebei Plain using 1127 boreholes to delineate aquifers I–IV via Kriging interpolation. Groundwater and wells were classified. Utilizing over 120,000 wells, this study analyzed depth trends for shallow/deep wells, developed well-depth models, and examined type correlation, while evaluating adjustments in new well depths in response to groundwater level changes. The results reveal shallow groundwater depth decreased by 0.29 m/yr from 2005 to 2019, reaching 73.84 m, and then rebounded 1.22 m/yr during 2019–2021 to 15.27 m; deep groundwater depth declined continuously at 0.78 m/yr over 2005–2021, reaching 105.82 m. Well-depth models show shallow well depths increased over time (peaking at 77.26 m) but project future declines, while deep wells exhibited continuous depth reduction (minimum 180.33 m) with ongoing decrease expected. The sensitivity of newly constructed well depths to groundwater fluctuations had the following order: rural domestic > agricultural > industrial for shallow wells, and agricultural > rural domestic > industrial for deep wells. This study informs future well-depth planning near overexploited zones and supports well optimization, irrigation management, strategy adjustment, and groundwater conservation. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 462
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 2323 KiB  
Article
Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River
by Suhua Meng, Xiangquan Li, Xueqing Zhang, Xiangxiang Cui, Jinli Cui, Chen Su, Yuhong Fei, Shan Lei and Kun Liu
Sustainability 2025, 17(12), 5333; https://doi.org/10.3390/su17125333 - 9 Jun 2025
Viewed by 318
Abstract
Due to the lack of research on the temporal variation in As in the lower Yellow River and the extreme rainfall during the 2021 rainy season, this study aimed to investigate the As distribution patterns and their evolution driven by water level changes. [...] Read more.
Due to the lack of research on the temporal variation in As in the lower Yellow River and the extreme rainfall during the 2021 rainy season, this study aimed to investigate the As distribution patterns and their evolution driven by water level changes. Principal component analysis (PCA) revealed that As mobilization was predominantly controlled by redox conditions and mineral dissolution/desorption processes. The distribution of high-As water exhibited significant spatial variability, mainly located in the alluvial fan plain (14.97 μg/L) and marine-alluvial plain (22.5 μg/L). The average As concentrations in the study area decreased by 3.78 μg/L(11.55 μg/L in May and 7.77 μg/L in September). High-As groundwater was highly sensitive to water level fluctuations, while low-As groundwater was less affected. In the alluvial fan plain, As decreased with a 0–2 m groundwater level rise but increased when the level exceeded 4 m. A sedimentary zone–As distribution–water level sensitivity response model was proposed, which provides important reference value for developing groundwater exploitation and utilization plans. Full article
Show Figures

Figure 1

19 pages, 7013 KiB  
Article
Monitoring and Simulation of 3-Meter Soil Water Profile Dynamics in a Pine Forest
by Long-Xiao Luo, Yan Liu, Xu Yang, Yan Jin, Yue Liu, Yuan Li, Mou Zhang, Xin-Bo Guo, Yang Gu, Zhen-Yi Wen, Ming-Jun Peng, Zhong-Yi Sun and Zheng-Hong Tan
Water 2025, 17(8), 1199; https://doi.org/10.3390/w17081199 - 16 Apr 2025
Viewed by 354
Abstract
Soil moisture content has a direct effect on the growth rate and survival rate of trees. However, previous studies on soil moisture have often focused on the topsoil, lacking effective monitoring of long-term dynamic changes in deep soil layers. In this study, 16 [...] Read more.
Soil moisture content has a direct effect on the growth rate and survival rate of trees. However, previous studies on soil moisture have often focused on the topsoil, lacking effective monitoring of long-term dynamic changes in deep soil layers. In this study, 16 time-domain reflectometer (TDR) probes were installed in the Haikou plantation in Kunming to conduct long-term continuous monitoring of soil moisture within a depth range of 0 to 300 cm. The results indicate that the vertical distribution of soil moisture can be classified into three levels: the active layer from 0 to 70 cm (θ=0.23±0.08 cm3 cm3), where the moisture content fluctuates significantly due to precipitation events; the transitional accumulation layer from 70 to 170 cm (θ=0.26±0.06 cm3 cm3), where moisture content increases with depth and peaks at 170 cm; and the deep dissipative layer from 170 to 300 cm (θ=0.24±0.08 cm3 cm3), where moisture content decreases with depth, forming a noticeable steep drop zone at 290 cm. The Hydrus-1D (Version 4.xx) model demonstrated high simulation capabilities (R2=0.58) in shallow (10 to 50 cm) and deep (280 to 300 cm) layers, while its performance decreased (R2=0.39) in the middle layer (110 to 200 cm). This study systematically reveals the dynamics of soil moisture from the surface active zone to the deep transition zone and evaluates the simulation ability of the Hydrus-1D model in this specific environment, which is also significant for assessing the groundwater resource conservation function of plantation ecosystems. Full article
Show Figures

Figure 1

23 pages, 16827 KiB  
Article
A Novel Electromagnetic Induction-Based Approach to Identify the State of Shallow Groundwater in the Oasis Group of the Tarim Basin in Xinjiang During 2000–2022
by Fei Wang, Yang Wei, Rongrong Li, Hongjiang Hu and Xiaojing Li
Remote Sens. 2025, 17(7), 1312; https://doi.org/10.3390/rs17071312 - 7 Apr 2025
Viewed by 556
Abstract
Our understanding of water and salt changes in the context of declining groundwater levels in the Tarim Basin remains limited, largely due to the scarcity of hydrological monitoring stations and field observation data. This study utilizes water and salt monitoring data from 474 [...] Read more.
Our understanding of water and salt changes in the context of declining groundwater levels in the Tarim Basin remains limited, largely due to the scarcity of hydrological monitoring stations and field observation data. This study utilizes water and salt monitoring data from 474 apparent electromagnetic induction (ECa, measured by EM38-MK2 device) sites across seven oases, combined with groundwater level observation data from representative areas, to analyze the spatiotemporal changes in ECa within the oases of the Tarim Basin from 2000 to 2022. Specific results are shown below: Numerous algorithmic predictions show the ensemble learning algorithm with the smallest error explained 71% of the ECa spatial variability. The ECa was particularly effective at identifying areas where groundwater extends beyond a depth of 5 m, demonstrating increased efficacy when ECa readings exceed the threshold of 1100 mS/m. Our spatiotemporal analysis spanning the years 2000 to 2022 has revealed a significant decline in ECa values within the artificially irrigated zones of the oasis clusters. In contrast, the transitional ecotone between the desert and the oases in Atux, Aksu, Kuqa, and Luntai have experienced a significant increase in ECa value. The variations observed within the defined Zone B, where ECa values ranged from 800 mS/m to 1100 mS/m, and Zone A, characterized by ECa values exceeding 1100 mS/m, aligned with the periodic fluctuations in the groundwater drought index (GDI), indicating a clear pattern of correlation. This study demonstrated that ECa can serve as a valuable tool for revealing the spatial and temporal variations of water resources in arid zones. The results obtained through this approach provided essential references for the local scientific management of soil and water resources. Full article
Show Figures

Figure 1

19 pages, 10534 KiB  
Article
Evolution Characteristics and Failure Mechanisms of Retrogressive Loess Landslides: A Case Study from the South Jingyang Platform, China
by Tao Ding, Zhiyuan He, Penghui Ma, Qingyi Mu, Yifan Xue, Yalin Nan and Kui Liu
Appl. Sci. 2025, 15(5), 2426; https://doi.org/10.3390/app15052426 - 24 Feb 2025
Viewed by 597
Abstract
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On [...] Read more.
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On the basis of these studies, this paper provides an updated summary of the distribution, evolution characteristics, and future trends of these landslides over the past 20 years. It was found that from 2003 to 2023, a total of 76 landslides occurred, mainly concentrated in three areas. In addition to forming retrogressive landslide groups, the large amount of landslide deposits at the substrate also transforms into loess mudflows, causing a disaster chain. The rapid rise of the groundwater level is the main key factor causing these flowslides, and the widely distributed joints, cracks, and caves in the slopes serve as preferential flow channels, actively contributing to the accelerated rise of the groundwater level. This further decreases the stability of the slopes and is also a significant factor promoting the occurrence of landslides. The occurrence of falls and slides is mainly due to the loosening of the slope caused by previous flowslides, which affects the soil structure and triggers the migration of the soil’s critical state. This explains why flowslides occur in the deep saturated zone, while slides and falls often occur in the shallow unsaturated zone in the study area. Since 2015, flowslides have decreased due to changes in irrigation practices and stabilized groundwater levels, confirming the close relationship between flowslide occurrence and groundwater level fluctuations. Full article
Show Figures

Figure 1

21 pages, 14530 KiB  
Article
Numerical Simulation Analysis of the Impact of Tunnel Construction on Aquifers in the Karst Regions of Southwestern China
by Xiaoqing Song, Chang Cen, Kai Liu, Ce Zhang, Aiguo Zhou, Ying Wang, Qin Peng and Jin Na
Water 2025, 17(5), 619; https://doi.org/10.3390/w17050619 - 20 Feb 2025
Cited by 1 | Viewed by 623
Abstract
Underground engineering construction in the karst regions of Southwestern China has become a focal point of China’s advancing regional urban development. However, construction activities interfere with the karst groundwater environment, which is characterized by irregular pore distributions and complex, variable flow patterns. This [...] Read more.
Underground engineering construction in the karst regions of Southwestern China has become a focal point of China’s advancing regional urban development. However, construction activities interfere with the karst groundwater environment, which is characterized by irregular pore distributions and complex, variable flow patterns. This study establishes a numerical model of the karst water system traversed by Line 2 of the Guiyang Rail Transit in China. Incorporating hydrogeological conditions and tunnel engineering parameters, the model simulates the effects of tunnel construction on the karst groundwater system. The flow-field distribution of the karst groundwater system is altered at various stages of tunnel construction. During tunnel excavation, a drainage zone centered around the subway forms in the groundwater system, altering the groundwater flow field and causing fluctuations in the groundwater level. During the lining phase, the tunnel area gradually transforms into a waterproof zone. Although the groundwater level gradually recovers under rainfall recharge, the waterproofing effect of the tunnel drives the formation of a new groundwater flow field within the groundwater system, changing both the groundwater level and the original flow field. This work offers support for the coordinated development of underground engineering and environmental protection in karst areas, facilitating sustainable urbanization. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 13536 KiB  
Article
Prediction of Groundwater Level Based on the Integration of Electromagnetic Induction, Satellite Data, and Artificial Intelligent
by Fei Wang, Lili Han, Lulu Liu, Yang Wei and Xian Guo
Remote Sens. 2025, 17(2), 210; https://doi.org/10.3390/rs17020210 - 8 Jan 2025
Cited by 1 | Viewed by 1297
Abstract
Groundwater level (GWL) in dry areas is an important parameter for understanding groundwater resources and environmental sustainability. Remote sensing data combined with machine learning algorithms have become one of the important tools for groundwater level modeling. However, the effectiveness of the above-based model [...] Read more.
Groundwater level (GWL) in dry areas is an important parameter for understanding groundwater resources and environmental sustainability. Remote sensing data combined with machine learning algorithms have become one of the important tools for groundwater level modeling. However, the effectiveness of the above-based model in the plains of the arid zone remains underexplored. Fortunately, soil salinity and soil moisture may provide an optimized solution for GWL prediction based on the application of apparent conductivity (ECa, mS/m) using electromagnetic induction (EMI). This has not been attempted in previous studies in oases in arid regions. The study proposed two strategies to predict GWL, included an ECa-based GWL model and a remote sensing-based GWL model (RS_GWL), and then compared and explored their performances and cooperation possibilities. To this end, this study first constructed the ECa prediction model and the RS_GWL with ensemble machine learning algorithms using environmental variables and field observations (474 ECa reads and 436 groundwater level observations from a mountain–oasis–desert system, respectively). Subsequently, a strategy to improve the prediction accuracy of GWL was proposed by comparing the correlation between GWL observations and the two models. The results showed that the RS_GWL prediction model explains 30% and 90% of the spatial variability in the two value domain intervals, GWL < 10 m and GWL > 10 m, respectively. The R2 of the modeling and the validation of the ECa was 79% and 73%, respectively. Careful analysis of the scatter plots between predicted ECa and GWL revealed that when ECa varies between 0–600 mS/m, 600–800 mS/m, 800–1100 mS/m, and >1100 mS/m, the fluctuation ranges of the corresponding GWL correspond to 0–31 m, 0–15 m, 0–10 m, and 0–5 m. Finally, combining the spatial variability of ECa and RS_GWL spatial distribution map, the following optimization strategies were finally established: GWL < 5 m (in natural land with ECa > 1100 mS/m), GWL < 5 m (occupied by farmland from RS_GWL) and GWL > 10 m (from RS_GWL), and 3 < GWL < 10 m (speculated). In conclusion, this study has demonstrated that the integration of EMI technology has significantly improved the precision of forecasting shallow GWL in oasis plain regions, outperforming the outcomes achieved by the use of remote sensing data alone. Full article
Show Figures

Graphical abstract

22 pages, 12094 KiB  
Article
Identification and Analysis on Surface Deformation in the Urban Area of Nanchang Based on PS-InSAR Method
by Mengping Zhang, Jiayi Pan, Peifeng Ma and Hui Lin
Remote Sens. 2025, 17(1), 157; https://doi.org/10.3390/rs17010157 - 5 Jan 2025
Cited by 1 | Viewed by 1215
Abstract
Interferometric Synthetic Aperture Radar (InSAR) technology has emerged as a vital tool for monitoring surface deformation due to its high accuracy and spatial resolution. With the rapid economic development of Nanchang, extensive infrastructure development and construction activities have significantly altered the urban landscape. [...] Read more.
Interferometric Synthetic Aperture Radar (InSAR) technology has emerged as a vital tool for monitoring surface deformation due to its high accuracy and spatial resolution. With the rapid economic development of Nanchang, extensive infrastructure development and construction activities have significantly altered the urban landscape. Underground excavation and groundwater extraction in the region are potential contributors to surface deformation. This study utilized Sentinel-1 satellite data, acquired between September 2018 and May 2023, and applied the Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique to monitor surface deformation in Nanchang’s urban area. The findings revealed that surface deformation rates in the study area range from −10 mm/a to 6 mm/a, with the majority of regions remaining relatively stable. Approximately 99.9% of the monitored points exhibited deformation rates within −5 mm/a to 5 mm/a. However, four significant subsidence zones were identified along the Gan River and its downstream regions, with a maximum subsidence rate reaching 9.7 mm/a. Historical satellite imagery comparisons indicated that certain subsidence areas are potentially associated with construction activities. Further analysis integrating subsidence data, monthly precipitation, and groundwater depth revealed a negative correlation between surface deformation in Region A and rainfall, with subsidence trends aligning with groundwater level fluctuations. However, such a correlation was not evident in the other three regions. Additionally, water level data from the Xingzi Station of Poyang Lake showed that only Region A’s subsidence trend closely corresponds with water level variations. We conducted a detailed analysis of the spatial distribution of soil types in Nanchang and found that the soil types in areas of surface deformation are primarily Semi-hydromorphic Soils and Anthropogenic Soils. These soils exhibit high compressibility, making them prone to compaction and significantly influencing surface deformation. This study concludes that localized surface deformation in Nanchang is primarily driven by urban construction activities and the compaction of artificial fill soils, while precipitation also has an impact in certain areas. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

27 pages, 16009 KiB  
Article
Numerical Groundwater Model to Assess the Fate of Nitrates in the Coastal Aquifer of Arborea (Sardinia, Italy)
by Gerhard Schäfer, Manon Lincker, Antonio Sessini and Alberto Carletti
Water 2024, 16(19), 2729; https://doi.org/10.3390/w16192729 - 25 Sep 2024
Cited by 1 | Viewed by 1333
Abstract
The Arborea plain in Sardinia (Italy) is classified as a nitrate vulnerable zone (NVZ). In the present study, the individual work steps that are necessary to progress from the existing 3D hydrogeological model to a 3D numerical groundwater model using the interactive finite-element [...] Read more.
The Arborea plain in Sardinia (Italy) is classified as a nitrate vulnerable zone (NVZ). In the present study, the individual work steps that are necessary to progress from the existing 3D hydrogeological model to a 3D numerical groundwater model using the interactive finite-element simulation system FEFLOW 7.4 are shown. The results of the transient flow model highlight the influence of the drainage network on the overall groundwater management: the total water volume drained by the ditches accounted for approximately 58% of the annual outflow volume. The numerical transport simulations conducted from 2012 to 2020 using hypothetical field-based nitrate input scenarios globally underestimated the high concentrations that were observed in the NVZ. However, as observed in the field, the computed nitrate concentrations in December 2020 still varied strongly in space, from several mg L−1 to several hundreds of mg L−1. The origin of these remaining local hotspots is not yet known. The modeling of rainfall fluctuations under the influence of climate change revealed a general long-term decline in the groundwater level of several tens of centimeters in the long term and, in conjunction with a zero-nitrate scenario, led to a significant decrease in nitrate pollution. Although hotspots were attenuated, the concentrations at several monitoring wells still exceeded the limit value of 50 mg L−1. Full article
(This article belongs to the Special Issue Water-Related Geoenvironmental Issues, 2nd Edition)
Show Figures

Figure 1

20 pages, 6564 KiB  
Article
Drivers of Daily Water Level Fluctuation of Shallow Groundwater in the Inner Delta of the River Danube
by Balázs Trásy, Norbert Magyar, István Gábor Hatvani, Tamás Garamhegyi, Ilona Kovács-Székely, József Kovács and Tímea Trásy-Havril
Water 2024, 16(14), 2011; https://doi.org/10.3390/w16142011 - 16 Jul 2024
Cited by 2 | Viewed by 1343
Abstract
Groundwater flow systems are influenced by the changes in surface waters as well as climatic factors. These teleconnections significantly increase in cases of extreme weather conditions. To prepare and mitigate the effect of such phenomena, the background factors that create and influence natural [...] Read more.
Groundwater flow systems are influenced by the changes in surface waters as well as climatic factors. These teleconnections significantly increase in cases of extreme weather conditions. To prepare and mitigate the effect of such phenomena, the background factors that create and influence natural processes must be recognized. In the present study, 94 shallow groundwater (SGW) wells’ water level time series were analyzed in the inner delta of the River Danube (Europe) the Szigetköz region to explore which factors contribute to the development of diurnal periodicity of SGW and what its drivers are. The relationship between surface meteorological processes and SGW dynamics in the Szigetköz region was investigated using hourly data from monitoring wells. Hourly water temperature data exhibited weak correlations with meteorological parameters. However, daily averaged data revealed stronger correlations, particularly between SGW levels and air temperature and potential evapotranspiration. Diurnal periodicity in SGW fluctuations correlated strongly with potential evapotranspiration. The study also demonstrated the role of capillary fringe dynamics in linking surface evapotranspiration with SGW fluctuations. Changes in groundwater levels, even small, can significantly affect soil moisture, vegetation, and ecosystem functioning, highlighting the sensitivity of the unsaturated zone to SGW fluctuations driven by surface processes. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 14264 KiB  
Article
Study on Water and Salt Transport Characteristics of Sunflowers under Different Irrigation Amounts in the Yellow River Irrigation Area
by Changfu Tong, Rui He, Jun Wang and Hexiang Zheng
Agronomy 2024, 14(5), 1058; https://doi.org/10.3390/agronomy14051058 - 16 May 2024
Cited by 4 | Viewed by 1409
Abstract
The control of irrigation volume is of significant importance in arid regions of northwest China. Particularly, it has a crucial impact on the salinization of shallow groundwater areas. In 2022 and 2023, field experiments were conducted to test three distinct under-membrane irrigation treatments. [...] Read more.
The control of irrigation volume is of significant importance in arid regions of northwest China. Particularly, it has a crucial impact on the salinization of shallow groundwater areas. In 2022 and 2023, field experiments were conducted to test three distinct under-membrane irrigation treatments. These treatments were assigned water quotas of HW (27 mm), MW (22.5 mm), and LW (18 mm). The HYDRUS-2D model was integrated with a field experiment to accurately simulate the dynamic fluctuations of soil water and salt in the sunflower root zone. The model’s performance was assessed and verified using real-field data from 2022 and 2023, and the simulation results closely matched the measured values. This research also used stable hydroxide isotopes to assess the water supply from various soil layers at different time intervals in sunflower plants. The results indicated that the three different levels of irrigation applied under the membrane had a significant impact on soil water content. Specifically, there was a significant difference in soil water content at a depth of 0–40 cm (p < 0.05), while there was little effect on the water content at a depth of 40–60 cm (p > 0.05). After irrigation, the average salt content in the top 0–20 cm of soil decreased by 7.0% compared to the medium and low irrigation levels, and by 10.8% compared to the medium irrigation level. Additionally, the medium irrigation level resulted in a 10.8% decrease in salt content compared to the low irrigation level, and a 4.1% decrease compared to the medium irrigation level. During the same period, the soil salinity levels at depths of 0–20 cm, 20–40 cm, 40–60 cm, and 60–100 cm in the area outside the membrane were measured to be 2.7~4.8 g·kg−1, 2.8~4.0 g·kg−1, 2.7~3.4 g·kg−1, and 1.7~2.6 g·kg−1, respectively. These levels decreased by 13.1~55.5%, 0.7~42.8%, −0.4~16.2%, and −72.7~7.5%, respectively. Following irrigation, the HW treatment mostly absorbed water in the 0–40 cm soil layer, while the MW and LW treatments absorbed water in both the 0–40 cm and 60–80 cm soil levels. The results indicated that the most optimal drip irrigation method beneath the membrane in this location was achieved when the amount of water applied was between 25–30 mm. This method demonstrated a combination of water conservation, high crop yield, and effective salt suppression. Full article
Show Figures

Figure 1

Back to TopTop