Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = green coffee

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1470 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 143
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

12 pages, 3313 KiB  
Article
Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes
by Yongcheng Zheng, Hai Zi, Shuqi Wang, Shengming Yin and Xu Shen
Appl. Sci. 2025, 15(15), 8553; https://doi.org/10.3390/app15158553 (registering DOI) - 1 Aug 2025
Viewed by 159
Abstract
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical [...] Read more.
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical conductivity and optical transmittance. Here, we present a green and scalable direct ink writing (DIW) strategy to fabricate graphene grid patterns by optimizing ink formulation with sodium dodecyl sulfate (SDS) and ethanol. SDS eliminates the coffee ring effect via Marangoni flow, while ethanol enhances graphene flake alignment during hot-pressing, achieving a high conductivity of 5.22 × 105 S m−1. The grid-patterned graphene-based flexible transparent electrodes exhibit a low sheet resistance of 21.3 Ω/sq with 68.5% transmittance as well as a high stability in high-temperature and corrosive environments, surpassing most metal/graphene composites. This method avoids toxic solvents and high-temperature treatments, demonstrating excellent stability in harsh environments. Full article
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 299
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

25 pages, 3903 KiB  
Article
An Integrated Multi-Criteria Decision Method for Remanufacturing Design Considering Carbon Emission and Human Ergonomics
by Changping Hu, Xinfu Lv, Ruotong Wang, Chao Ke, Yingying Zuo, Jie Lu and Ruiying Kuang
Processes 2025, 13(8), 2354; https://doi.org/10.3390/pr13082354 - 24 Jul 2025
Viewed by 323
Abstract
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing [...] Read more.
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing process, which will take away the energy-saving and emission reduction benefits of remanufacturing. In addition, remanufacturing design schemes rarely consider the human ergonomics of the product, which leads to uncomfortable handling of the product by the customer. To reduce the remanufacturing carbon emission and improve customer comfort, it is necessary to select a reasonable design scheme to satisfy the carbon emission reduction and ergonomics demand; therefore, this paper proposes an integrated multi-criteria decision-making method for remanufacturing design that considers the carbon emission and human ergonomics. Firstly, an evaluation system of remanufacturing design schemes is constructed to consider the remanufacturability, cost, carbon emission, and human ergonomics of the product, and the evaluation indicators are quantified by the normalization method and the Kansei engineering (KE) method; meanwhile, the hierarchical analysis method (AHP) and entropy weight method (EW) are used for the calculation of the subjective and objective weights. Then, a multi-attribute decision-making method based on the combination of an assignment approximation of ideal solution ranking (TOPSIS) and gray correlation analysis (GRA) is proposed to complete the design scheme selection. Finally, the feasibility of the scheme is verified by taking a household coffee machine as an example. This method has been implemented as an application using Visual Studio 2022 and Microsoft SQL Server 2022. The research results indicate that this decision-making method can quickly and accurately generate reasonable remanufacturing design schemes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

7 pages, 395 KiB  
Proceeding Paper
Health Effects of Coffee Products on Oxidative Stress-Related Metabolic Disorders: An Updated Perspective
by Santa Anabel Hernández-Abreu and Francisco Javier Álvarez-Martínez
Proceedings 2025, 119(1), 9; https://doi.org/10.3390/proceedings2025119009 - 18 Jul 2025
Viewed by 526
Abstract
Coffee, rich in polyphenols, has been studied for its impact on obesity and oxidative stress. Its bioactive compounds combat oxidative stress, which is linked to chronic diseases. This study provides a comprehensive, artificial intelligence-enhanced review of the scientific literature, highlighting the impact of [...] Read more.
Coffee, rich in polyphenols, has been studied for its impact on obesity and oxidative stress. Its bioactive compounds combat oxidative stress, which is linked to chronic diseases. This study provides a comprehensive, artificial intelligence-enhanced review of the scientific literature, highlighting the impact of coffee and its derivatives on these disorders. Several studies show that coffee husks and green coffee supplements reduce body weight and inflammation by increasing antioxidant defenses. In conclusion, coffee and its derived products, including valorized by-products, represent a promising avenue for dietary strategies aimed at preventing and managing oxidative stress-associated metabolic disorders and promoting overall metabolic health. Full article
Show Figures

Figure 1

16 pages, 1934 KiB  
Systematic Review
The Changes of Kahweol and Cafestol of Arabica Coffee from Bean to Consumption: A Systematic Literature Review
by A. Ita Juwita, Didah Nur Faridah, Dian Herawati, Nuri Andarwulan, Renata Kazimierczak and Dominika Średnicka-Tober
Beverages 2025, 11(4), 105; https://doi.org/10.3390/beverages11040105 - 17 Jul 2025
Viewed by 625
Abstract
The main diterpenes found in coffee, kahweol and cafestol, possess anti-inflammatory, anti-diabetic, and anticancer properties but are also reported to cause hypercholesterolemic effects. Their concentrations are known to be variable in coffee. This review aimed to discuss the concentrations of kahweol and cafestol [...] Read more.
The main diterpenes found in coffee, kahweol and cafestol, possess anti-inflammatory, anti-diabetic, and anticancer properties but are also reported to cause hypercholesterolemic effects. Their concentrations are known to be variable in coffee. This review aimed to discuss the concentrations of kahweol and cafestol from green coffee beans to brewed coffee. The results showed that the average concentrations of kahweol and cafestol in Arabica green beans were higher than in roasted and brewed coffee. The decrease in kahweol from green beans to roasted beans was 14.83%. In brewed coffee, kahweol was reduced by 90.26% and cafestol by 88.28%, compared to green beans. The changes in kahweol and cafestol levels were found to be influenced by various factors, including roasting methods and brewing techniques. The ratio of kahweol to cafestol in Arabica green beans was 1.7; in green coffee oil and roasted coffee oil, 1.2; in roasted beans, 1.3; and in brewed coffee, 1.1. In addition to their health-related functional properties, kahweol and cafestol concentrations and their ratio are suggested to be relevant markers in distinguishing between coffee species at various processing stages. Full article
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 314
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

15 pages, 1471 KiB  
Article
Roasting Temperature as a Factor Modifying the Caffeine and Phenolic Content of Ethiopian Coffee
by Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Maciej Buśko, Lidia Szwajkowska-Michałek, Tomasz Szablewski and Kinga Stuper-Szablewska
Processes 2025, 13(7), 2037; https://doi.org/10.3390/pr13072037 - 27 Jun 2025
Viewed by 599
Abstract
The functional properties of coffee are mainly attributed to bioactive compounds, primarily caffeine and polyphenols. Their quantitative and qualitative profile depends on many factors, including the roasting process. The study aimed to assess the effect of different roasting conditions on the caffeine content [...] Read more.
The functional properties of coffee are mainly attributed to bioactive compounds, primarily caffeine and polyphenols. Their quantitative and qualitative profile depends on many factors, including the roasting process. The study aimed to assess the effect of different roasting conditions on the caffeine content and polyphenol composition of the Ethiopian variety Coffea arabica L. (from two regions: Sidama and Jimma). In total, 21 bioactive compounds were identified, including caffeine, 14 phenolic acids, 3 flavonoid glycosides, and 3 flavonoids. It was found that chlorogenic acid had the highest concentration of all phenolic compounds in the Jimma and Sidama varieties, regardless of the degree of roasting. Studies have shown that the initial stage of coffee roasting (light roast) affects chlorogenic acid content—its level increases compared to green coffee, but then decreases in subsequent roasting stages (medium and dark roast). In contrast, the concentration of caffeic acid decreases during the light roast stage, while it increases during the medium and dark roast stages. The Sidama variety contains more caffeine than the Jimma variety. Full article
Show Figures

Figure 1

21 pages, 2672 KiB  
Article
Green Composite Based on a Polymer Mixture Containing Biopolymer and Waste Coffee Husks
by Cezary Gozdecki, Marek Kociszewski, Krzysztof Moraczewski, Tomasz Karasiewicz, Małgorzata Łazarska and Magdalena Stepczyńska
Polymers 2025, 17(13), 1748; https://doi.org/10.3390/polym17131748 - 24 Jun 2025
Viewed by 427
Abstract
This study presents the results of investigations into the properties of a composite made from the commercial biopolymer with varying concentrations of ground coffee husks (CH) at 10, 30, and 50 wt%. Thermal, thermomechanical, physical, and mechanical properties were determined for the composites. [...] Read more.
This study presents the results of investigations into the properties of a composite made from the commercial biopolymer with varying concentrations of ground coffee husks (CH) at 10, 30, and 50 wt%. Thermal, thermomechanical, physical, and mechanical properties were determined for the composites. Results indicate that the inclusion of CH into the polymer matrix significantly enhances the thermomechanical properties of the obtained composites, particularly in terms of storage modulus at 30 °C. The addition of coffee filler did not alter the characteristic thermal curves. Still, it reduced the thermal resistance of the composites, lowering the degradation temperature by approximately 40 °C compared to the pure polymer. Furthermore, the incorporation of CH introduced an additional stage of mass loss on the thermogravimetric curves, associated with the thermal decomposition of CH. The physico-mechanical properties of the composite depend on the content of the filler. Increasing the coffee content increases the dynamics of water absorption by the composite. It also increases the composite’s stiffness while reducing its tensile and flexural strength. The obtained results suggest that biopolymer-based composites filled with ground CH can be effectively used for manufacturing biodegradable products, with the moisture diffusion behavior indicating susceptibility to degradation that is modulated by the CH content. Full article
(This article belongs to the Special Issue Eco-Friendly Wood-Based Composites—Challenges and Prospects)
Show Figures

Figure 1

16 pages, 1025 KiB  
Article
Comprehensive Analysis of Mycotoxins in Green Coffee Food Supplements: Method Development, Occurrence, and Health Risk Assessment
by Laura Carbonell-Rozas, Octavian Augustin Mihalache, Renato Bruni and Chiara Dall’Asta
Toxins 2025, 17(7), 316; https://doi.org/10.3390/toxins17070316 - 21 Jun 2025
Viewed by 712
Abstract
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by [...] Read more.
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by one-step solid-phase extraction (SPE) was selected for the extraction and clean-up of 15 mycotoxins followed by ultra-high performance chromatography–tandem mass spectrometry detection (UHPLC-MS/MS). The target mycotoxins included aflatoxins (AFG1, AFG2, AFB1, AFB2), Alternaria toxins (AOH, AME, TEN), ochratoxin A (OTA), fumonisins (FB1, FB2), zearalenone (ZEN), trichothecenes (T-2, HT-2), enniatin B1 (ENNB1), and beauvericin (BEA). The proposed method was successfully characterized, obtaining high recoveries, a satisfactory precision, and low detection limits. Subsequently, the method was applied for the analysis of 16 commercial food supplements. The analysis revealed the presence of mycotoxins in all samples investigated with Fusarium mycotoxins as the most prevalent. The dietary exposure and risk characterization revealed a low level of risk, except for AFs where chronic exposure in adults may lead to potential health concerns. Full article
Show Figures

Graphical abstract

17 pages, 1610 KiB  
Article
Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy
by Mariana Santos-Rivera, Lakshmanan Viswanathan and Faris Sheibani
Spectrosc. J. 2025, 3(2), 20; https://doi.org/10.3390/spectroscj3020020 - 19 Jun 2025
Viewed by 509
Abstract
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to [...] Read more.
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to classify green coffee beans based on PHP. For the first time, seven distinct PHP categories—Alchemy, Anaerobic Processing (Deep Fermentation), Dry-Hulled, Honey, Natural, Washed, and Wet-Hulled—were discriminated using NIRS, encompassing 20 different processing protocols under varying environmental and fermentation conditions. The NIR spectra (350–2500 nm) of 524 green Arabica coffee samples were analyzed using PCA-LDA models (750–2450 nm), achieving classification accuracies up to 100% for underrepresented categories and strong performance (91–95%) for dominant PHP groups in an independent test set. These results demonstrate that NIRS can detect subtle chemical signatures associated with diverse PHP techniques, offering a scalable tool for quality assurance, fraud prevention, and traceability in global coffee supply chains. While limited sample sizes for some PHP categories may influence model generalization, this study lays the foundation for future work involving broader datasets and integration with digital traceability systems. The approach has direct implications for producers, traders, and certifying bodies seeking reliable, real-time PHP verification. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

21 pages, 1361 KiB  
Article
Anhydrous Ethanol Production from Discarded Fruits Using Fermentation and a Green Dehydration System
by Margarita Ramírez-Carmona, Leidy Rendón-Castrillón, Carlos Ocampo-López, Manuela García-Ríos, Xiomy Lamilla-Mendoza, Sebastián Piedrahíta-Pérez, Juliana Rodríguez-Estrada, Valerie Samaan-Salazar, Samuel Urrea-López, Daniel Valencia-Yepes and Santiago Zea-Gutiérrez
Processes 2025, 13(6), 1854; https://doi.org/10.3390/pr13061854 - 12 Jun 2025
Viewed by 776
Abstract
This study explores the production of anhydrous ethanol from discarded fruits, aiming to determine optimal fermentation conditions and evaluate the feasibility of a green separation technology. Fermentation experiments were performed using juices from Psidium guajava (S1), Carica paapaya (S2), and mucilage residues of [...] Read more.
This study explores the production of anhydrous ethanol from discarded fruits, aiming to determine optimal fermentation conditions and evaluate the feasibility of a green separation technology. Fermentation experiments were performed using juices from Psidium guajava (S1), Carica paapaya (S2), and mucilage residues of Coffea arabica (S3). All fermentations were carried out at a pH of 4.5 for 7 days in 1 L bioreactors. A full 22 factorial design was applied to evaluate the effects of two variables: yeast type (commercial Saccharomyces cerevisiae [CY] vs. native yeast [NY]) and temperature (21 °C vs. 30 °C). Higher ethanol concentrations were achieved with CY at 30 °C, yielding 6.79% ethanol for S3. A multi-criteria matrix prioritized coffee residues due to their high ethanol yield, biomass availability, and economic viability. The ethanol was dehydrated using a packed-bed bioadsorption system with crushed corn, which increased purity from 6.7% v/v to 98.9% v/v in two stages, while avoiding azeotropic limitations. Energy analysis revealed low specific consumption (3.68 MJ/kg), outperforming conventional distillation. The results of this study, obtained at operating temperatures of 30 °C and 21 °C, a pH of 4.5, and an operating time of 7 days in a 1L bioreactor, demonstrate ethanol concentrations of 6.79%, confirming the technical feasibility of using agricultural waste as a raw material and validating the efficiency of a bioadsorption-based dehydration system. These findings address the current gap in integrating green ethanol separation with low-cost agricultural residues and highlight a sustainable alternative for decentralized bioethanol production. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1210
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

14 pages, 1584 KiB  
Article
Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef
by Wendy Alejandra Atondo-Echeagaray, Brisa del Mar Torres-Martínez, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Nelson Huerta-Leidenz and Armida Sánchez-Escalante
Resources 2025, 14(6), 95; https://doi.org/10.3390/resources14060095 - 4 Jun 2025
Viewed by 924
Abstract
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE, [...] Read more.
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE, water–ethanol), in comparison to textured soy protein extract (TSPE), and their effect on the microbial and antioxidant stability of meat homogenates. The results showed that the extraction solvent significantly affected the yield and metabolite content (p < 0.05), with GCBE-W and TSPE-WE as the highest performers (>20% by both). GCBE-E presented the highest (p < 0.05) tannin value (19.13 mg/100 g), while GCBE-W and GCBE-WE showed the highest (p < 0.05) flavonoids and chlorogenic acid content (1.19 and 11.20 mg/100 g, respectively). Regarding antimicrobial activity, GCBE-WE showed the highest (p < 0.05) inhibition against Staphylococcus aureus and Escherichia coli (31.11% and 41.94% of inhibition, respectively). In comparison, GCBE-E and GCBE-WE were significantly effective (p < 0.05) against Listeria monocytogenes and Salmonella typhimurium (44.79% and 31.25% of inhibition by both, respectively). Regarding antioxidant activity, GCBE-E and GCBE-WE presented the highest (p < 0.05) DPPH inhibition (92.79% by both), as well as the highest reducing power values (1.40 abs and 173.28 mg Fe2+/g by both). GCBE-WE significantly reduced (p < 0.05) the microbial load after heating in meat (1.21 log10 CFU/g), while GCBE-E and ASC showed the lowest (p < 0.05) pH values (5.74 by both). Furthermore, incorporating the extracts GCBE-E, GCBE-WE, and TSPE significantly reduced (p < 0.05) lipid oxidation (40, 45.71, and 48.57%), and affected (p < 0.05) color parameters. These findings suggest the potential of GCBEs as natural additives in the meat industry. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

15 pages, 342 KiB  
Article
Association of Food-Specific Glycemic Load and Distinct Dietary Components with Gestational Diabetes Mellitus Within a Mediterranean Dietary Pattern: A Prospective Cohort Study
by Antigoni Tranidou, Antonios Siargkas, Emmanouela Magriplis, Ioannis Tsakiridis, Panagiota Kripouri, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Nutrients 2025, 17(11), 1917; https://doi.org/10.3390/nu17111917 - 3 Jun 2025
Viewed by 681
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, identified within the MD framework, and their glycemic load (GL) are associated with GDM risk. Methods: This prospective cohort is part of the BORN2020 longitudinal study on pregnant women in Greece; dietary intake was assessed using a validated food frequency questionnaire (FFQ) at two time points (pre-pregnancy and during pregnancy). MD adherence was categorized by Trichopoulou score tertiles. GL was calculated for food groups using glycemic index (GI) reference values and carbohydrate content. Dietary patterns were identified using factor analysis. Logistic regression models estimated adjusted odds ratios (aORs) for GDM risk, stratified by MD adherence and time period, controlling for maternal, lifestyle, and clinical confounders. Results: In total, 797 pregnant women were included. Total MD adherence was not significantly associated with GDM risk. However, both food-specific GLs and dietary patterns with distinct dominant foods were predictive. GL from boiled greens/salads was consistently protective (aOR range: 0.09–0.19, p < 0.05). Patterns high in tea, coffee, and herbal infusions before pregnancy were linked to increased GDM risk (aOR = 1.96, 95% CI: 1.31–3.02, p = 0.001), as were patterns rich in fresh juice, vegetables, fruits, legumes, and olive oil during pregnancy (aOR = 2.91, 95% CI: 1.50–6.24, p = 0.003). A pattern dominated by sugary sweets, cold cuts, animal fats, and refined products was inversely associated with GDM (aOR = 0.34, 95% CI: 0.17–0.64, p = 0.001). A pattern characterized by sugar alternatives was associated with higher risk for GDM (aOR = 4.94, 95% CI: 1.48–19.36, p = 0.014). These associations were supported by high statistical power (power = 1). Conclusions: Within the context of the MD, evaluating both the glycemic impact of specific food groups and identifying risk-associated dietary patterns provides greater insight into GDM risk than overall MD adherence scores alone. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

Back to TopTop