Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = gray water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5178 KiB  
Article
Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model
by Sathvik Reddy Nookala, Jennifer G. Duan, Kun Qi, Jason Pacheco and Sen He
Water 2025, 17(15), 2301; https://doi.org/10.3390/w17152301 - 2 Aug 2025
Viewed by 242
Abstract
Monitoring sediment concentration in water bodies is crucial for assessing water quality, ecosystems, and environmental health. However, physical sampling and sensor-based approaches are labor-intensive and unsuitable for large-scale, continuous monitoring. This study employs machine learning models to estimate suspended sediment concentration using images [...] Read more.
Monitoring sediment concentration in water bodies is crucial for assessing water quality, ecosystems, and environmental health. However, physical sampling and sensor-based approaches are labor-intensive and unsuitable for large-scale, continuous monitoring. This study employs machine learning models to estimate suspended sediment concentration using images captured in natural light, named RGB, and near-infrared (NIR) conditions. A controlled dataset of approximately 1300 images with SSC values ranging from 1000 mg/L to 150,000 mg/L was developed, incorporating temperature, time of image capture, and solar irradiance as additional features. Random forest regression and gradient boosting regression were trained on mean RGB values, red reflectance, time of captured, and temperature for natural light images, achieving up to 72.96% accuracy within a 30% relative error. In contrast, NIR images leveraged gray-level co-occurrence matrix texture features and temperature, reaching 83.08% accuracy. Comparative analysis showed that ensemble models outperformed deep learning models like Convolutional Neural Networks and Multi-Layer Perceptrons, which struggled with high-dimensional feature extraction. These findings suggest that using machine learning models and RGB and NIR imagery offers a scalable, non-invasive, and cost-effective way of sediment monitoring in support of water quality assessment and environmental management. Full article
Show Figures

Figure 1

25 pages, 2893 KiB  
Review
Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review
by Xuefei Wang, Qi Hu, Run Zhang, Chuanhao Sun and Mo Wang
Water 2025, 17(15), 2273; https://doi.org/10.3390/w17152273 - 30 Jul 2025
Viewed by 263
Abstract
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between [...] Read more.
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between 2000 and 2023 in the Web of Science Core Collection, focusing specifically on the ecosystem services associated with UBGI. Employing CiteSpace visualization technology, this study elucidates the major research trends, thematic clusters, and international collaboration patterns shaping this field. The research delves into the diverse range of ecosystem services provided by blue-green infrastructure and analyzes their contributions to urban well-being. Findings indicate that regulatory services—particularly climate regulation, biodiversity enhancement, and water resource management—have become central research foci within the contexts of urban green infrastructure (UGI), urban blue infrastructure (UBI), and UBGI. Co-citation and keyword analyses reveal that nature-based solutions, hybrid green–gray infrastructure, and the application of urban resilience frameworks are gaining increasing scholarly attention. By summarizing the evolutionary trajectory and priority directions of UBGI research, this study provides significant insights for future interdisciplinary research aimed at enhancing the supply of urban environmental ecosystem services. Full article
Show Figures

Figure 1

22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Viewed by 265
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 368
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 338
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 7547 KiB  
Article
Internal Flow Characteristics in a Prototype Spray Tower Based on CFD
by Xin Li, Hui-Fan Huang, Xiao-Wei Xu and Yu-Liang Zhang
Processes 2025, 13(7), 2308; https://doi.org/10.3390/pr13072308 - 20 Jul 2025
Viewed by 339
Abstract
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. [...] Read more.
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. The results show that outlet flow rate is strongly positively correlated with rotational speed, while inlet water velocity demonstrates nonlinear effects on internal flow velocity. Significant parameter interaction exists—the correlation between inlet velocity and outlet velocity varies with rotational speed (R = −0.9831 to 0.5229), and the outlet flow rate ratio shows a strong negative correlation with rotational speed (R = −0.9918). The gray model demonstrated superior robustness with minimal error fluctuations, whereas the partial least squares regression model exhibited significantly increased errors under extreme conditions. This study provides a theoretical foundation and data support for spray tower parameter optimization. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

19 pages, 1952 KiB  
Article
Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability
by Yongqi Liu, Jiayu Zhao, Rana Muhammad Adnan Ikram, Soon Keat Tan and Mo Wang
Water 2025, 17(14), 2110; https://doi.org/10.3390/w17142110 - 15 Jul 2025
Viewed by 380
Abstract
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs [...] Read more.
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs into historic urban landscapes by employing Internal–External (IE) matrix modeling and an impact–uncertainty assessment, grounded in a structured evaluation of key internal strengths and weaknesses, as well as external opportunities and threats. The Internal Factor Evaluation (IFE) score of 2.900 indicates a favorable internal environment, characterized by the multifunctionality of NBS and their ability to reconnect urban populations with nature. Meanwhile, the External Factor Evaluation (EFE) score of 2.797 highlights moderate support from policy and public awareness but identifies barriers such as funding shortages and interdisciplinary coordination. Based on these findings, two strategies are developed: an SO (Strength–Opportunity) strategy, promoting community-centered and policy-driven NBS design, and a WO (Weakness–Opportunity) strategy, targeting resource optimization through legal support and cross-sectoral collaboration. This study breaks new ground by transforming theoretical NBS concepts into actionable, culturally sensitive planning tools that enable decision-makers to navigate the unique challenges of implementing adaptive stormwater and environmental management in historically constrained urban environments. Full article
Show Figures

Figure 1

10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1321
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 698
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

20 pages, 10170 KiB  
Article
Birds and People in Medieval Bulgaria—A Review of the Subfossil Record of Birds During the First and Second Bulgarian Empires
by Zlatozar Boev
Quaternary 2025, 8(3), 36; https://doi.org/10.3390/quat8030036 - 8 Jul 2025
Viewed by 519
Abstract
For the first time, the numerous scattered data on birds (wild and domestic) have been collected based on their medieval bone remains discovered on the modern territory of the Republic of Bulgaria. The collected information is about a total of 37 medieval settlements [...] Read more.
For the first time, the numerous scattered data on birds (wild and domestic) have been collected based on their medieval bone remains discovered on the modern territory of the Republic of Bulgaria. The collected information is about a total of 37 medieval settlements from the time of the First and Second Bulgarian Empires. Among the settlements studied are both the two medieval Bulgarian capitals (Pliska and Veliki Preslav), as well as other cities, smaller settlements, military fortresses, monasteries, and inhabited caves. The data refer to a total of 48 species of wild birds and 6 forms of domestic birds of 11 avian orders: Accipitriformes, Anseriformes, Ciconiiformes, Columbiformes, Falconiformes, Galliformes, Gruiformes, Otidiformes, Passeriformes, Pelecaniformes, and Strigiformes. The established composition of wild birds amounts to over one tenth (to 11.5%) of the modern avifauna in the country. Five of the established species (10.4%) have disappeared from the modern nesting avifauna of the country—the bearded vulture, the great bustard, the little bustard, the gray crane, and the saker falcon (the latter two species have reappeared as nesters in the past few years). First Bulgarian Empire (681–1018): Investigated settlements—22. Period covered—five centuries (7th to 11th c.). Found in total: at least 44 species/forms of birds, of which 39 species of wild birds and 5 forms of poultry. Second Bulgarian Empire (1185–1396): Investigated settlements—15. Period covered—3 centuries (12th to 14th c.). Found in total: at least 39 species/forms of birds, of which 33 species of wild birds and 6 forms of poultry. The groups of raptors, water, woodland, openland, synanthropic and domestic birds were analyzed separately. The conclusion was made that during the two periods of the Middle Ages, birds had an important role in the material and spiritual life of the population of the Bulgarian lands. Birds were mainly used for food (domestic birds), although some were objects of hunting. No traces of processing were found on the bones. Birds were subjects of works of applied and monumental art. Their images decorated jewelry, tableware, walls of buildings and other structures. Full article
(This article belongs to the Special Issue Quaternary Birds of the Planet of First, Ancient and Modern Humans)
Show Figures

Figure 1

21 pages, 3040 KiB  
Article
Drinking Water and Sanitation Safety Planning for Medical Facilities: An Innovative PoU Approach for a Water System Description Using Ecomaps
by Lara Kamm, Ralf M. Hagen, Nico T. Mutters, Ricarda M. Schmithausen, Ruth Weppler and Manuel Döhla
Environments 2025, 12(7), 217; https://doi.org/10.3390/environments12070217 - 26 Jun 2025
Viewed by 531
Abstract
Drinking Water Safety Plans (DWSP) in buildings serve to identify health hazards associated with the drinking water system. Sanitation Safety Plans (SSP) fulfill the same purpose for the sewage system. Water Safety Plans (WSP) include DWSPs, SSPs, and water systems like gray water [...] Read more.
Drinking Water Safety Plans (DWSP) in buildings serve to identify health hazards associated with the drinking water system. Sanitation Safety Plans (SSP) fulfill the same purpose for the sewage system. Water Safety Plans (WSP) include DWSPs, SSPs, and water systems like gray water and firefighting water. WSPs are based on a high-quality description of the water systems. This paper presents a new methodology for describing water systems. In contrast to previous approaches, the system description begins at the point where the water is consumed. These points of use are described using ecomaps, which are then supplemented with information about the pipe network. This approach makes it possible to fulfill four relevant premises: (1) the system description includes all essential parts of the drinking water installation, (2) the system description is possible with usual equipment, (3) the system description can be carried out with the least possible additional personnel costs, and (4) the system description is controllable, versionable, changeable, and forgery-proof. The ecomaps created in this way are suitable for the next step within the WSP framework, namely hazard and risk assessment. In addition, the ecomaps can be integrated into a quality, occupational safety, or environmental management system. Aspects of water security can be added to enable the ecomaps to be used as the basis for a total integrated water management system. Full article
Show Figures

Figure 1

34 pages, 13684 KiB  
Article
How to Improve Blue–Green–Gray Infrastructure to Optimize River Cooling Island Effect on Riparian Zone for Outdoor Activities in Summer
by Min Wang, Yuqing Su and Jieqiong Wang
Land 2025, 14(7), 1330; https://doi.org/10.3390/land14071330 - 22 Jun 2025
Cited by 1 | Viewed by 627
Abstract
As important urban green spaces, rivers enhance cooling island effects significantly by leveraging environmental factors. This study selected Suzhou River in Shanghai as the subject to explore how to improve blue–green–gray infrastructure to optimize the river cooling island effect on the riparian zone [...] Read more.
As important urban green spaces, rivers enhance cooling island effects significantly by leveraging environmental factors. This study selected Suzhou River in Shanghai as the subject to explore how to improve blue–green–gray infrastructure to optimize the river cooling island effect on the riparian zone for outdoor activities in summer. A total of 77 samples, including 36 control groups and 41 experimental groups, were categorized into 12 types of blue–green–gray infrastructure composite features. ENVI-met was used to simulate summer thermal comfort, while redundancy analysis and boosted regression trees were used to identify significant factors and thresholds influencing the river’s cooling island effect. The results showed that for Suzhou River, the green–blue–green–gray–green composition most effectively optimizes the river cooling island effect. It is recommended to select construction sites where the river width is 55 m and the percentage of green infrastructure exceeds 40% and keep the distance between green infrastructure and the water body to within 3 m. Additionally, limiting gray infrastructure to less than 10%, with an average building height of 37 m and a building undulation of 25 m, is recommended to achieve the optimal cooling effect. This study finally proposes optimization strategies to maximize the cooling island effect of urban rivers, offering insights for the development of climate-adaptive urban riparian zones. Full article
Show Figures

Figure 1

17 pages, 884 KiB  
Article
Water Footprint Assessment of Beef and Dairy Cattle Production in the Regional Unit of Karditsa, Greece
by Anthoula Dota, Vassilios Dotas, Dimitrios Gourdouvelis, Lampros Hatzizisis, George Symeon, Dimitrios Galamatis and Nicolaos Theodossiou
Sustainability 2025, 17(12), 5298; https://doi.org/10.3390/su17125298 - 8 Jun 2025
Viewed by 517
Abstract
One of the most important factors affecting water resources is livestock development. This study focuses on estimating the water demands of beef and dairy cattle breeding, as well as the corresponding products, in the Regional Unit of Karditsa (Greece), while simultaneously assessing the [...] Read more.
One of the most important factors affecting water resources is livestock development. This study focuses on estimating the water demands of beef and dairy cattle breeding, as well as the corresponding products, in the Regional Unit of Karditsa (Greece), while simultaneously assessing the pollution caused by this activity in water bodies. The impacts are measured using the water footprint (WF) approach across its three dimensions (green, blue, and gray), considering the quantity of feed and water utilized by each animal type and the production system applied in the research area. For beef production, the intensive system shows a total WF of 90,535 m3/ton (gray 88%, green 9%, blue 3%), while the semi-intensive system totals 82,027 m3/ton (gray 84%, green 12%, blue 4%). For dairy cows, the total WF reaches 2750 m3/year/ton of milk (gray 81%, green 14%, blue 5%). Gray WF was estimated based on pollutant loads from livestock waste using concentration thresholds for biochemical oxygen demand (BOD5), nitrogen (N), and phosphorus (P), providing a clearer view of water quality degradation linked to livestock activities. These findings can guide regional directorates in addressing key water-related pressures from livestock production. Full article
10 pages, 447 KiB  
Article
Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes
by Brandon M. Miller
Int. J. Plant Biol. 2025, 16(2), 61; https://doi.org/10.3390/ijpb16020061 - 2 Jun 2025
Viewed by 355
Abstract
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The [...] Read more.
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The objective of this study was to generate a relative scale of the predicted drought tolerance of Populus spp. to inform site and taxon selection in managed settings. Utilizing vapor pressure osmometry, this study examined seasonal osmotic adjustment and predicted leaf water potential at the turgor loss point (Ψpo) among several Populus taxa. All evaluated taxa demonstrated the ability to osmotically adjust (ΔΨπ100) throughout the growing season. Bigtooth aspen (P. grandidentata Michx.) exhibited the most osmotic adjustment (−1.1 MPa), whereas black cottonwood (P. trichocarpa Torr. & A. Gray ex Hook.) exhibited the least (−0.44 MPa). Across the taxa, the estimated mean Ψpo values in spring and summer were −1.8 MPa and −2.8 MPa, respectively. Chinese aspen (P. cathayana Rehder) exhibited the lowest Ψpo (−3.32 MPa), whereas black cottonwood exhibited the highest (−2.47 MPa). The results indicate that drought tolerance varies widely among these ten Populus species and hybrids; bigtooth aspen and Chinese aspen are the best suited to tolerating drought in managed landscapes. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

14 pages, 1966 KiB  
Article
Evaluation of Water Security in a Water Source Area from the Perspective of Nonpoint Source Pollution
by Jun Yang, Ruijun Su, Yanbo Wang and Yongzhong Feng
Sustainability 2025, 17(11), 4998; https://doi.org/10.3390/su17114998 - 29 May 2025
Viewed by 544
Abstract
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource [...] Read more.
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource for the Beijing–Tianjin–Hebei region, and its security is of great significance. In this study, 28 indicators including society, nature, and economy were selected from the water sources of the MR-SNWDP from 2000 to 2017. According to the Drivers-Pressures-States-Impact-Response (DPSIR) framework principle, the entropy weight method was used for weight calculation, and the comprehensive evaluation method was used for evaluating the water security of the water sources of the MR-SNWDP. This study showed that the total loss of nonpoint source pollution (NPSP) in the water source showed a trend of slow growth, except in 2007. Over the past 18 years, the proportion of pollution from three NPSP sources, livestock, and poultry (LP) breeding industry, planting industry, and living sources, were 44.56%, 40.33%, and 15.11%, respectively. The main driving force of water security in all the areas of the water source was the total net income per capita of farmers. The main pressure was the amount of LP breeding and the amount of fertilizer application. The largest impact indicators were NPSP gray water footprint and soil erosion area, and water conservancy investment was the most effective response measure. Overall, the state of the water source safety was relatively stable, showing an overall upward trend, and it had remained at Grade III except for in 2005, 2006, and 2011. The state of water safety in all areas except Shiyan City was relatively stable, where the state of water safety had fluctuated greatly. Based on the assessment findings, implications for policy and decision-making suggestions for sustainable management of the water sources of the MR-SNWDP resources are put forward. Agricultural cultivation in water source areas should reduce the application of chemical fertilizers and accelerate the promotion of agricultural intensification. Water source areas should minimize retail livestock and poultry farming and promote ecological agriculture. The government should increase investment in water conservancy and return farmland to forests and grasslands, and at the same time strengthen the education of farmers’ awareness of environmental protection. The evaluation system of this study combined indicators such as the impact of agricultural nonpoint source pollution on water bodies, which is innovative and provides a reference for the water safety evaluation system. Full article
(This article belongs to the Special Issue Hydrosystems Engineering and Water Resource Management)
Show Figures

Figure 1

Back to TopTop