Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = goldmine tailings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2775 KiB  
Article
The Effect of Biochar Amendment, Microbiome Inoculation, Crop Mixture and Planting Density on Post-Mining Restoration
by Degi Harja Asmara, Suzanne Allaire, Meine van Noordwijk and Damase P. Khasa
Forests 2023, 14(4), 856; https://doi.org/10.3390/f14040856 - 21 Apr 2023
Cited by 4 | Viewed by 2292
Abstract
Ecological restoration with a multispecies and multifunctional approach can accelerate the re-establishment of numerous ecosystem services. The challenges with land that is degraded, damaged, or destroyed post-mining are the low productivity of soil and the high potential for contaminants. Herein, we evaluated the [...] Read more.
Ecological restoration with a multispecies and multifunctional approach can accelerate the re-establishment of numerous ecosystem services. The challenges with land that is degraded, damaged, or destroyed post-mining are the low productivity of soil and the high potential for contaminants. Herein, we evaluated the multispecies and multifunctional approach to restoration strategy through a mixture of woody and herbaceous species, microsymbiont and biochar amendments, and plant spacing. The experiments were conducted using greenhouse and field trials located in Quebec, Canada. We used a mixture of tree species (Alnus viridis (Chaix) DC. ssp. crispa (Aiton) Turrill, Picea glauca (Moench) Voss, Populus tremuloides Michx. and Salix arbusculoides Andersson) and herbaceous species (Avena sativa L., Festuca rubra L. and Trifolium repens L.) on two types of gold-mine waste materials (fine tailing and waste rock). The biochar amendment and microbial inoculation were applied on both greenhouse and field trials. We found both positive and negative effects of plant spacing, biochar amendment and inoculation depending on their interactions. The net positive effect was shown by combining high plantation density, biochar, and inoculation factors on Alnus viridis ssp. crispa. Overall, plantation density was shown to be the most important factor in generating the net positive effect. We suggest that the mechanism was correlated with the improvement in microclimate through soil plant water conservation and microbial activity enhancement over soil temperature modification. Hence, we propose to put emphasis on microclimate improvement for accelerating the restoration processes, along with other combined factors, including microbial inoculation and biochar amendment. Full article
(This article belongs to the Special Issue Production in Forest Nurseries and Field Performance of Seedlings)
Show Figures

Figure 1

11 pages, 586 KiB  
Article
Cyanide Biodegradation by a Native Bacterial Consortium and Its Potential for Goldmine Tailing Biotreatment
by María José Alvarado-López, Sofía E. Garrido-Hoyos, María Elena Raynal-Gutiérrez, Elie G. El-Kassis, Víctor M. Luque-Almagro and Genoveva Rosano-Ortega
Water 2023, 15(8), 1595; https://doi.org/10.3390/w15081595 - 20 Apr 2023
Cited by 11 | Viewed by 4484
Abstract
A native cyanide-degrading bacterial consortium was isolated from goldmine tailing sediments. Mine tailings are toxic effluents due to their metal–cyanide complexes. The bacterial consortium was able to degrade an initial sodium cyanide concentration ranging from 5 to 120 mg L−1 in alkaline [...] Read more.
A native cyanide-degrading bacterial consortium was isolated from goldmine tailing sediments. Mine tailings are toxic effluents due to their metal–cyanide complexes. The bacterial consortium was able to degrade an initial sodium cyanide concentration ranging from 5 to 120 mg L−1 in alkaline synthetic wastewater (pH > 9.2), for a maximum of 15 days. The free cyanide biodegradation efficiency was 98% for the highest initial free cyanide concentration tested and followed a first-order kinetic profile, with an estimated kinetic rate constant of 0.12 ± 0.011 d−1. The cyanide-degrading consortium was streaked with serial dilutions on a specific medium (R2A). 16S rRNA gene sequencing and mass spectrometry proteomic fingerprinting of the isolates showed that the bacterial strains belonged to Microbacterium paraoxydans, Brevibacterium casei, Brevundimonas vesicularis, Bacillus cereus and Cellulosimicrobium sp. The first four genera had previously been identified as cyanide-degrading bacteria. Microbacterium and Brevibacterium had previously been found in alkaline conditions, showing resistance to heavy metals. As for Cellulosimicrobium, to our knowledge, this is the first study to implicate it directly or indirectly in cyanide biodegradation. In this research, these genera were identified as functional bacteria for cyanide degradation, and they might be suitable for mine tailing biotechnological tertiary treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3207 KiB  
Article
Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador
by Bryan Salgado-Almeida, Daniel A. Falquez-Torres, Paola L. Romero-Crespo, Priscila E. Valverde-Armas, Fredy Guzmán-Martínez and Samantha Jiménez-Oyola
Sustainability 2022, 14(10), 6089; https://doi.org/10.3390/su14106089 - 17 May 2022
Cited by 20 | Viewed by 5723
Abstract
Mining environmental liabilities (MEL) are of great concern because of potential risks to ecosystems and human health. In this research, the environmental risk (RI) related to MEL existing in three artisanal and small-scale gold-mining areas of Ecuador was evaluated. For this [...] Read more.
Mining environmental liabilities (MEL) are of great concern because of potential risks to ecosystems and human health. In this research, the environmental risk (RI) related to MEL existing in three artisanal and small-scale gold-mining areas of Ecuador was evaluated. For this purpose, data of 167 MEL including landfills, mining galleries, tailing deposits, and mineral processing plants from Macuchi, Tenguel–Ponce Enriquez, and Puyango mining areas, were analyzed. The risk assessment related to the presence of waste deposits was carried out based on the methodology proposed by the Spanish Geological Survey. Moreover, the procedure outlined in the Environmental Risk Assessment Guide of the Ministry of Environment of Peru for nonwaste deposits was applied. The highest RI values were identified in Puyango and Tenguel–Ponce Enriquez. Thus, they were both categorized as priority control areas requiring intervention and rehabilitation plans. The MEL that require a high level of intervention include waste deposits and mine entrances associated with potentially toxic elements. Moreover, the point risk maps showed that rivers in the studied areas have a potential pollution risk. This study provides risk levels associated with MEL in mining areas from Ecuador. This information could be used for environmental management and pollution mitigation. Full article
(This article belongs to the Topic Mining Safety and Sustainability)
Show Figures

Figure 1

Back to TopTop