Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = gluten pellet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1057 KiB  
Article
Determination of Optimum Processing Condition of High Protein Laver Chip Using Air-Frying and Reaction Flavor Technologies
by Gyeong-Tae Jeong, Changheon Lee, Eunsong Cha, Seungmin Moon, Yong-Jun Cha and Daeung Yu
Foods 2023, 12(24), 4450; https://doi.org/10.3390/foods12244450 - 12 Dec 2023
Cited by 5 | Viewed by 2255
Abstract
This study aimed to develop a high-protein and gluten-free laver chip using air-frying and reaction flavor technologies via response surface methodology (RSM). The optimum processing condition (w/w) was determined with a batter composition of 20% dried laver, 21.3% hair [...] Read more.
This study aimed to develop a high-protein and gluten-free laver chip using air-frying and reaction flavor technologies via response surface methodology (RSM). The optimum processing condition (w/w) was determined with a batter composition of 20% dried laver, 21.3% hair tail surimi, and 58.7% rice flour. Additional ingredients included б-gluconolactone, NaHCO3, soybean oil, corn syrup, table salt, saccharin, and a mixture of distilled water and reaction flavor-inducing solution (RFIS). The laver pellet processed and dried (50 °C, 1–2 h) with air-frying (195 °C, 52.5 s) to process the laver chip. The values of brittleness and puffing ratio of the laver chip were 6.93 ± 0.33 N and 116.19 ± 0.48%, respectively, with an error within 10% of the predicted values of RSM. RFIS was prepared via RSM with the addition of precursor substances (w/v) of methionine 0.54%, threonine 3.30%, glycine 2.40%, glutamic acid 0.90%, and glucose 3% to distilled water and then heating reaction (121 °C, 90 min). The quantitatively descriptive analysis (QDA) of RFIS, baked potato-like and savory odor were 6.00 ± 0.78 and 4.00 ± 0.91, respectively, with an error within 10% of the predicted values. The laver chip exhibited high-protein (24.26 ± 0.10 g%) and low-calorie (371.56 kcal) contents. Full article
(This article belongs to the Special Issue The Development of New Functional Foods and Ingredients)
Show Figures

Figure 1

21 pages, 8644 KiB  
Article
Compression Characteristics and Fracture Simulation of Gluten Pellet
by Zongyou Ben, Abdulaziz Nuhu Jibril, Xiao Sun, Yu Bai, Duoxing Yang, Kunjie Chen and Yan Dong
Foods 2023, 12(8), 1598; https://doi.org/10.3390/foods12081598 - 10 Apr 2023
Cited by 2 | Viewed by 2628
Abstract
Gluten pellets are readily broken on packaging and transportation. This study aimed to research mechanical properties (elastic modulus, compressive strength, failure energy) with different moisture contents and aspect ratios under different compressive directions. The mechanical properties were examined with a texture analyzer. The [...] Read more.
Gluten pellets are readily broken on packaging and transportation. This study aimed to research mechanical properties (elastic modulus, compressive strength, failure energy) with different moisture contents and aspect ratios under different compressive directions. The mechanical properties were examined with a texture analyzer. The results revealed that the material properties of the gluten pellet are anisotropic, and it was more likely to cause crushing during radial compression. The mechanical properties were positively correlated with the moisture content. The aspect ratio had no significant effect (p > 0.05) on the compressive strength. The statistical function model (p < 0.01; R2 ≥ 0.774) for mechanical properties and moisture content fitted well with the test data. The minimum elastic modulus, compressive strength, and failure energy of standards-compliant pellets (with moisture content less than 12.5% d.b.) were 340.65 MPa, 6.25 MPa, and 64.77 mJ, respectively. Moreover, a finite element model with cohesive elements was established using Abaqus software (Version 2020, Dassault Systèmes, Paris, France) to simulate the compression rupture form of gluten pellets. The relative error of the fracture stress in the axial and radial directions between the simulation results and the experimental value was within 4–7%. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 5248 KiB  
Article
An Experimental and Numerical Study for Discrete Element Model Parameters Calibration: Gluten Pellets
by Zongyou Ben, Xubo Zhang, Duoxing Yang and Kunjie Chen
Agriculture 2023, 13(4), 744; https://doi.org/10.3390/agriculture13040744 - 23 Mar 2023
Cited by 5 | Viewed by 1885
Abstract
Discrete element method (DEM) simulation is widely used to calculate the flow characteristics of particles under certain conditions. DEM input parameters are the prerequisite for the accurate modeling and simulation of particles. In order to explore the mechanical properties and breaking behavior of [...] Read more.
Discrete element method (DEM) simulation is widely used to calculate the flow characteristics of particles under certain conditions. DEM input parameters are the prerequisite for the accurate modeling and simulation of particles. In order to explore the mechanical properties and breaking behavior of gluten pellets, the pellet material property, the interaction parameters of pellet–stainless steel and pellet–pellet (multi-spheres autofill model), and the bonding parameters (bonded particle model) were calibrated by experiments and simulations. The relative error of the angle of repose, the breaking displacement, and the breaking force between simulated and experimental values were 0.28%, 0.66%, and 1.09%, respectively. Based on the regression analysis in the Design-Expert 12.0 software, the relationships among evaluating indicators (angle of repose, breaking displacement, and breaking force) and their corresponding influencing factors were established, respectively. Meanwhile, the feasibility of applying the interaction parameters of the multi-spheres autofill model to the bonded particle model was verified through the free fall test, the inclined plane sliding test, and the inclined plane tumbling time test. This work can provide a reference for the design of pellet feed processing and transportation machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 2027 KiB  
Article
Commensal Bacterium Rothia aeria Degrades and Detoxifies Gluten via a Highly Effective Subtilisin Enzyme
by Guoxian Wei, Ghassan Darwish, Frank G. Oppenheim, Detlef Schuppan and Eva J. Helmerhorst
Nutrients 2020, 12(12), 3724; https://doi.org/10.3390/nu12123724 - 2 Dec 2020
Cited by 15 | Viewed by 4629
Abstract
Celiac disease is characterized by a chronic immune-mediated inflammation of the small intestine, triggered by gluten contained in wheat, barley, and rye. Rothia aeria, a gram-positive natural colonizer of the oral cavity and the upper digestive tract is able to degrade and [...] Read more.
Celiac disease is characterized by a chronic immune-mediated inflammation of the small intestine, triggered by gluten contained in wheat, barley, and rye. Rothia aeria, a gram-positive natural colonizer of the oral cavity and the upper digestive tract is able to degrade and detoxify gluten in vitro. The objective of this study was to assess gluten-degrading activity of live and dead R. aeria bacteria in vitro, and to isolate the R. aeria gluten-degrading enzyme. Methods: After an overnight fast, Balb/c mouse were fed a 1 g pellet of standard chow containing 50% wheat (and 4% gliadin) with or without 1.6 × 107 live R. aeria bacteria. After 2 h, in vivo gluten degradation was assessed in gastric contents by SDS-PAGE and immunoblotting, and immunogenic epitope neutralization was assessed with the R5 gliadin ELISA assay. R. aeria enzyme isolation and identification was accomplished by separating proteins in the bacterial cell homogenate by C18 chromatography followed by gliadin zymography and mass spectrometric analysis of excised bands. Results: In mice fed with R. aeria, gliadins and immunogenic epitopes were reduced by 20% and 33%, respectively, as compared to gluten digested in control mice. Killing of R. aeria bacteria in ethanol did not abolish enzyme activity associated with the bacteria. The gluten degrading enzyme was identified as BAV86562.1, here identified as a member of the subtilisin family. Conclusion: This study shows the potential of R. aeria to be used as a first probiotic for gluten digestion in vivo, either as live or dead bacteria, or, alternatively, for using the purified R. aeria enzyme, to benefit the gluten-intolerant patient population. Full article
(This article belongs to the Special Issue Grain Intake and Human Health)
Show Figures

Figure 1

Back to TopTop