Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = global recurrent networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 214
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 - 31 Jul 2025
Viewed by 271
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

16 pages, 832 KiB  
Article
Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems
by Jevgenijs Telicko, Andris Krumins and Agris Nikitenko
Buildings 2025, 15(15), 2702; https://doi.org/10.3390/buildings15152702 - 31 Jul 2025
Viewed by 148
Abstract
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of [...] Read more.
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of numerous actuators and monitoring points makes manually designed control algorithms potentially suboptimal due to the complexity and human factors. To address this challenge, model predictive control based on artificial neural networks can be employed. The advantage of this approach lies in the model’s ability to learn and understand the dynamic behavior of the building from monitoring datasets. It should be noted that the effectiveness of such control models is directly dependent on the forecasting accuracy of the neural networks. In this study, we adapt neural network architectures such as GRU and TCN for use in the context of building model predictive control. Furthermore, we propose a novel hybrid architecture that combines the strengths of recurrent and convolutional neural networks. These architectures were compared using real monitoring data collected with a custom-developed device introduced in this work. The results indicate that, under the given experimental conditions, the proposed hybrid architecture outperforms both GRU and TCN models, particularly when processing large sequential input vectors. Full article
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 272
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

28 pages, 2724 KiB  
Article
Data-Driven Dynamic Optimization for Hosting Capacity Forecasting in Low-Voltage Grids
by Md Tariqul Islam, M. J. Hossain and Md Ahasan Habib
Energies 2025, 18(15), 3955; https://doi.org/10.3390/en18153955 - 24 Jul 2025
Viewed by 283
Abstract
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. [...] Read more.
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. However, conventional HC analysis and forecasting approaches struggle to capture temporal dependencies, the impact of DOE constraints on network operation, and uncertainty in DER output. This study introduces a dynamic optimization framework that leverages the benefits of the sensitivity gate of the Sensitivity-Enhanced Recurrent Neural Network (SERNN) forecasting model, Particle Swarm Optimization (PSO), and Bayesian Optimization (BO) for HC forecasting. The PSO determines the optimal weights and biases, and BO fine-tunes hyperparameters of the SERNN forecasting model to minimize the prediction error. This approach dynamically adjusts the import/export of the DER output to the grid by integrating the DOE constraints into the SG-PSO-BO architecture. Performance evaluation on the IEEE-123 test network and a real Australian distribution network demonstrates superior HC forecasting accuracy, with an R2 score of 0.97 and 0.98, Mean Absolute Error (MAE) of 0.21 and 0.16, and Root Mean Square Error (RMSE) of 0.38 and 0.31, respectively. The study shows that the model effectively captures the non-linear and time-sensitive interactions between network parameters, DER variables, and weather information. This study offers valuable insights into advancing dynamic HC forecasting under real-time DOE constraints in sustainable DER integration, contributing to the global transition towards net-zero emissions. Full article
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism
by Wenhan Song, Enguang Zuo, Junyu Zhu, Chen Chen, Cheng Chen, Ziwei Yan and Xiaoyi Lv
Sensors 2025, 25(15), 4530; https://doi.org/10.3390/s25154530 - 22 Jul 2025
Viewed by 270
Abstract
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. [...] Read more.
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L2)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model’s training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

31 pages, 7723 KiB  
Article
A Hybrid CNN–GRU–LSTM Algorithm with SHAP-Based Interpretability for EEG-Based ADHD Diagnosis
by Makbal Baibulova, Murat Aitimov, Roza Burganova, Lazzat Abdykerimova, Umida Sabirova, Zhanat Seitakhmetova, Gulsiya Uvaliyeva, Maksym Orynbassar, Aislu Kassekeyeva and Murizah Kassim
Algorithms 2025, 18(8), 453; https://doi.org/10.3390/a18080453 - 22 Jul 2025
Viewed by 473
Abstract
This study proposes an interpretable hybrid deep learning framework for classifying attention deficit hyperactivity disorder (ADHD) using EEG signals recorded during cognitively demanding tasks. The core architecture integrates convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) layers to [...] Read more.
This study proposes an interpretable hybrid deep learning framework for classifying attention deficit hyperactivity disorder (ADHD) using EEG signals recorded during cognitively demanding tasks. The core architecture integrates convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) layers to jointly capture spatial and temporal dynamics. In addition to the final hybrid architecture, the CNN–GRU–LSTM model alone demonstrates excellent accuracy (99.63%) with minimal variance, making it a strong baseline for clinical applications. To evaluate the role of global attention mechanisms, transformer encoder models with two and three attention blocks, along with a spatiotemporal transformer employing 2D positional encoding, are benchmarked. A hybrid CNN–RNN–transformer model is introduced, combining convolutional, recurrent, and transformer-based modules into a unified architecture. To enhance interpretability, SHapley Additive exPlanations (SHAP) are employed to identify key EEG channels contributing to classification outcomes. Experimental evaluation using stratified five-fold cross-validation demonstrates that the proposed hybrid model achieves superior performance, with average accuracy exceeding 99.98%, F1-scores above 0.9999, and near-perfect AUC and Matthews correlation coefficients. In contrast, transformer-only models, despite high training accuracy, exhibit reduced generalization. SHAP-based analysis confirms the hybrid model’s clinical relevance. This work advances the development of transparent and reliable EEG-based tools for pediatric ADHD screening. Full article
Show Figures

Graphical abstract

26 pages, 5535 KiB  
Article
Research on Power Cable Intrusion Identification Using a GRT-Transformer-Based Distributed Acoustic Sensing (DAS) System
by Xiaoli Huang, Xingcheng Wang, Han Qin and Zhaoliang Zhou
Informatics 2025, 12(3), 75; https://doi.org/10.3390/informatics12030075 - 21 Jul 2025
Viewed by 438
Abstract
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch [...] Read more.
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch parallel collaborative architecture: two branches employ Gramian Angular Summation Field (GASF) and Recursive Pattern (RP) algorithms to convert one-dimensional intrusion waveforms into two-dimensional images, thereby capturing rich spatial patterns and dynamic characteristics and the third branch utilizes a Gated Recurrent Unit (GRU) algorithm to directly focus on the temporal evolution features of the waveform; additionally, a Transformer component is integrated to capture the overall trend and global dependencies of the signals. Ultimately, the terminal employs a Bidirectional Long Short-Term Memory (BiLSTM) network to perform a deep fusion of the multidimensional features extracted from the three branches, enabling a comprehensive understanding of the bidirectional temporal dependencies within the data. Experimental validation demonstrates that the GRT-Transformer achieves an average recognition accuracy of 97.3% across three typical intrusion events—illegal tapping, mechanical operations, and vehicle passage—significantly reducing false alarms, surpassing traditional methods, and exhibiting strong practical potential in complex real-world scenarios. Full article
Show Figures

Figure 1

15 pages, 1291 KiB  
Article
Development and Validation of a Standardized Pseudotyped Virus-Based Neutralization Assay for Assessment of Anti-Nipah Virus Neutralizing Activity in Candidate Nipah Vaccines
by Muntasir Alam, Md Jowel Rana, Asma Salauddin, Emma Bentley, Gathoni Kamuyu, Dipok Kumer Shill, Shafina Jahan, Mohammad Mamun Alam, Md Abu Raihan, Mohammed Ziaur Rahman, Rubhana Raqib, Ali Azizi and Mustafizur Rahman
Vaccines 2025, 13(7), 753; https://doi.org/10.3390/vaccines13070753 - 15 Jul 2025
Viewed by 1728
Abstract
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting [...] Read more.
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting implementation in resource-limited settings. To address this, we standardized and validated a pseudotyped virus neutralization assay (PNA) for assessing NiV-neutralizing antibodies in BSL-2 laboratories. Methods: The NiV-PNA was validated following international regulatory standards, using a replication-defective recombinant Vesicular stomatitis virus (rVSV) backbone dependent pseudotyped virus. Assessments included sensitivity, specificity, dilutional linearity, relative accuracy, precision, and robustness. The assay was calibrated using the WHO International Standard for anti-NiV antibodies and characterized reference sera to ensure reliable performance. Findings: Preliminary evaluation of the developed NiV-PNA showed 100% sensitivity and specificity across 10 serum samples (5 positive, 5 negative), with a positive correlation to a calibrated reference assay (R2 = 0.8461). Dilutional linearity (R2 = 0.9940) and accuracy (98.18%) were confirmed across the analytical titer range of 11-1728 IU/mL. The assay also exhibited high precision, with intra-assay and intermediate precision geometric coefficients of variation of 6.66% and 15.63%, respectively. Robustness testing demonstrated minimal variation across different pseudotyped virus lots, incubation times, and cell counts. Conclusions: The validated NiV-PNA is a reproducible and scalable assay platform for quantifying NiV neutralizing antibodies, offering a safer alternative to virus culture. Its validation and integration into the CEPI Centralized Laboratory Network will enhance global capacity for vaccine evaluation and outbreak preparedness. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Graphical abstract

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 243
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

21 pages, 1871 KiB  
Article
Fusion of Recurrence Plots and Gramian Angular Fields with Bayesian Optimization for Enhanced Time-Series Classification
by Maria Mariani, Prince Appiah and Osei Tweneboah
Axioms 2025, 14(7), 528; https://doi.org/10.3390/axioms14070528 - 10 Jul 2025
Viewed by 518
Abstract
Time-series classification remains a critical task across various domains, demanding models that effectively capture both local recurrence structures and global temporal dependencies. We introduce a novel framework that transforms time series into image representations by fusing recurrence plots (RPs) with both Gramian Angular [...] Read more.
Time-series classification remains a critical task across various domains, demanding models that effectively capture both local recurrence structures and global temporal dependencies. We introduce a novel framework that transforms time series into image representations by fusing recurrence plots (RPs) with both Gramian Angular Summation Fields (GASFs) and Gramian Angular Difference Fields (GADFs). This fusion enriches the structural encoding of temporal dynamics. To ensure optimal performance, Bayesian Optimization is employed to automatically select the ideal image resolution, eliminating the need for manual tuning. Unlike prior methods that rely on individual transformations, our approach concatenates RP, GASF, and GADF into a unified representation and generalizes to multivariate data by stacking transformation channels across sensor dimensions. Experiments on seven univariate datasets show that our method significantly outperforms traditional classifiers such as one-nearest neighbor with Dynamic Time Warping, Shapelet Transform, and RP-based convolutional neural networks. For multivariate tasks, the proposed fusion model achieves macro F1 scores of 91.55% on the UCI Human Activity Recognition dataset and 98.95% on the UCI Room Occupancy Estimation dataset, outperforming standard deep learning baselines. These results demonstrate the robustness and generalizability of our framework, establishing a new benchmark for image-based time-series classification through principled fusion and adaptive optimization. Full article
Show Figures

Figure 1

32 pages, 6839 KiB  
Article
Identification of Novel Molecular Panel as Potential Biomarkers of PAN-Gastrointestinal Cancer Screening: Bioinformatics and Experimental Analysis
by Fatemeh Hajibabaie, Parisa Mohamadynejad, Laleh Shariati, Kamran Safavi and Navid Abedpoor
Biology 2025, 14(7), 803; https://doi.org/10.3390/biology14070803 - 2 Jul 2025
Viewed by 485
Abstract
PAN-gastrointestinal cancers (PAN-GI cancers), including the oral, esophageal, gastric, hepatocellular, pancreatic=, and colorectal cancers, are the leading cause of cancer-related mortality. Despite recent advances in identifying the molecular mechanisms driving these malignancies, the high incidence and recurrence of the PAN-gastrointestinal cancers and the [...] Read more.
PAN-gastrointestinal cancers (PAN-GI cancers), including the oral, esophageal, gastric, hepatocellular, pancreatic=, and colorectal cancers, are the leading cause of cancer-related mortality. Despite recent advances in identifying the molecular mechanisms driving these malignancies, the high incidence and recurrence of the PAN-gastrointestinal cancers and the low survival rates of patients indicate the need to introduce biomarkers for early diagnosis to improve diagnostic and therapeutic approaches. In the present study, using integrated transcriptomics, RNA-Seq and microarray data, from the TCGA and GEO databases, respectively, were combined to discover and validate a global biomarker panel for PAN-gastrointestinal cancers. In order to validate the bioinformatics data, the expression levels of genes in the molecular panel were evaluated using real-time quantitative polymerase chain reaction (qPCR) in tumor tissues of 21 patients with early diagnosis of gastric cancer and colorectal cancer (Stage I and II). By examining the transcriptomic profiles of six types of PAN-gastrointestinal cancers, a network of closely related hub genes (n = 167) with biomarker potential (p value < 0.05) was identified. Also, using ROC curve analysis and the Youden index, a molecular panel consisting of AURKA, CEP55, DTL, and TTK was presented (95% confidence interval and p value < 0.05), which showed exceptional sensitivity and specificity in differentiating malignant tissue from normal tissue (AUC > 80%). The diagnostic efficacy of these markers was confirmed by further validation using qPCR in colorectal and gastric tumor samples (p value < 0.05). In conclusion, a novel molecular signature panel including the AURKA, CEP55, DTL, and TTK genes could improve early cancer detection and diagnostic accuracy, and it may contribute to the treatment outcomes of PAN-gastrointestinal cancer patients. Full article
Show Figures

Figure 1

35 pages, 1399 KiB  
Systematic Review
Congestion Forecasting Using Machine Learning Techniques: A Systematic Review
by Mehdi Attioui and Mohamed Lahby
Future Transp. 2025, 5(3), 76; https://doi.org/10.3390/futuretransp5030076 - 1 Jul 2025
Viewed by 1144
Abstract
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 [...] Read more.
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 to 2024, adhering to the PRISMA 2020 guidelines. A comprehensive search of three major databases (IEEE Xplore, SpringerLink, and ScienceDirect) yielded 9695 initial records, with 115 studies meeting the inclusion criteria following rigorous screening. Data extraction encompassed methodological approaches, ML techniques, traffic characteristics, and forecasting periods, with quality assessment achieving near-perfect inter-rater reliability (Cohen’s κ = 0.89). Deep Neural Networks were the predominant technical approach (47%), with supervised learning being the most prevalent (57%). Classification tasks were the most common (42%), primarily addressing recurrent congestion scenarios (76%) and passenger vehicles (90%). The quality of publications was notably high, with 85% appearing in Q1-ranked journals, demonstrating exponential growth from minimal activity in 2010 to 18 studies in 2022. Significant research gaps persist: reinforcement learning is underutilized (8%), rural road networks are underrepresented (2%), and industry–academia collaboration is limited (3%). Future research should prioritize multimodal transportation systems, real-time adaptation mechanisms, and enhanced practical implementation to advance intelligent transportation systems (ITSs). This review was not registered because it focused on mapping the research landscape rather than intervention effects. Full article
Show Figures

Figure 1

16 pages, 808 KiB  
Article
Enhancing Stock Price Forecasting with CNN-BiGRU-Attention: A Case Study on INDY
by Madilyn Louisa, Gumgum Darmawan and Bertho Tantular
Mathematics 2025, 13(13), 2148; https://doi.org/10.3390/math13132148 - 30 Jun 2025
Viewed by 408
Abstract
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the [...] Read more.
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the movement of INDY stock prices using a hybrid machine learning approach called CNN-BiGRU-AM. The objective was to generate future forecasts of INDY stock prices based on historical data from 28 August 2019 to 24 February 2025. The method applied a hybrid model combining a Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and an Attention Mechanism (AM) to address the nonlinear, volatile, and noisy characteristics of stock data. The results showed that the CNN-BiGRU-AM model achieved high accuracy with a Mean Absolute Percentage Error (MAPE) below 3%, indicating its effectiveness in capturing long-term patterns. The CNN helped extract local features and reduce noise, the BiGRU captured bidirectional temporal dependencies, and the Attention Mechanism allocated weights to the most relevant historical information. The model remained robust even when stock prices were sensitive to external factors such as global commodity trends and geopolitical events. This study contributes to providing more accurate forecasting solutions for companies, investors, and stakeholders in making strategic decisions. It also enriches the academic literature on the application of deep learning techniques in financial data analysis and stock market forecasting within a complex and dynamic environment. Full article
Show Figures

Figure 1

16 pages, 33950 KiB  
Article
VDMS: An Improved Vision Transformer-Based Model for PM2.5 Concentration Prediction
by Tong Zhao and Meixia Qu
Appl. Sci. 2025, 15(13), 7346; https://doi.org/10.3390/app15137346 - 30 Jun 2025
Viewed by 261
Abstract
China’s accelerating industrialization has led to worsening air pollution, characterized by recurrent haze episodes. The accurate quantification of PM2.5 distribution is crucial for air quality assessment and public health management. Although traditional prediction models can effectively identify PM2.5 concentration fluctuations with [...] Read more.
China’s accelerating industrialization has led to worsening air pollution, characterized by recurrent haze episodes. The accurate quantification of PM2.5 distribution is crucial for air quality assessment and public health management. Although traditional prediction models can effectively identify PM2.5 concentration fluctuations with moderate accuracy, their dependence relies heavily on extensive ground-based monitoring station data, limiting their applicability in areas with sparse monitoring coverage. To address this limitation, this study proposes a novel algorithm for high-precision PM2.5 concentration prediction, termed VDMS (Vision Transformer with DLSTM Multi-Head Self-Attention and Self-supervision). Based on the traditional Vision Transformer (ViT) architecture, VDMS incorporates a Double-Layered Long Short-Term Memory (DLSTM) network and a Multi-Head Self-Attention mechanism to enhance the model’s capacity to capture temporal sequence features and global dependencies. These enhancements contribute to greater stability and robustness in feature representation, ultimately improving prediction performance. Cross-validation experimental results show that the VDMS model outperforms benchmark models in PM2.5 concentration prediction tasks, achieving a coefficient of determination (R2) of 0.93, a root mean square error (RMSE) of 4.05 μg/m3, and a mean absolute error (MAE) of 3.23 μg/m3. Furthermore, experiments conducted in areas with sparse ground monitoring stations demonstrate that the model maintains high predictive accuracy, further validating its applicability and generalization capability in data-limited scenarios. Moreover, the VDMS model adopts a modular design, offering strong scalability that allows its architecture to be adjusted according to specific requirements. This adaptability renders it suitable for monitoring various atmospheric pollutants, providing essential technical support for precise environmental management and air quality forecasting. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

Back to TopTop