Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = geranyl derivative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1558 KB  
Article
Targeted Isolation of Prenylated Flavonoids from Paulownia tomentosa Fruit Extracts via AI-Guided Workflow Integrating LC-UV-HRMS/MS
by Tomas Rypar, Lenka Molcanova, Barbora Valkova, Ema Hromadkova, Christoph Bueschl, Bernhard Seidl, Karel Smejkal and Rainer Schuhmacher
Metabolites 2025, 15(9), 616; https://doi.org/10.3390/metabo15090616 - 17 Sep 2025
Viewed by 550
Abstract
Objectives: This study presents a versatile, AI-guided workflow for the targeted isolation and characterization of prenylated flavonoids from Paulownia tomentosa (Thunb.) Steud. (Paulowniaceae). Methods: The approach integrates established extraction and chromatography-based fractionation protocols with LC-UV-HRMS/MS analysis and supervised machine-learning (ML) custom-trained classification models, [...] Read more.
Objectives: This study presents a versatile, AI-guided workflow for the targeted isolation and characterization of prenylated flavonoids from Paulownia tomentosa (Thunb.) Steud. (Paulowniaceae). Methods: The approach integrates established extraction and chromatography-based fractionation protocols with LC-UV-HRMS/MS analysis and supervised machine-learning (ML) custom-trained classification models, which predict prenylated flavonoids from LC-HRMS/MS spectra based on the recently developed Python package AnnoMe (v1.0). Results: The workflow effectively reduced the chemical complexity of plant extracts and enabled efficient prioritization of fractions and compounds for targeted isolation. From the pre-fractionated plant extracts, 2687 features were detected, 42 were identified using reference standards, and 214 were annotated via spectra library matching (public and in-house). Furthermore, ML-trained classifiers predicted 1805 MS/MS spectra as derived from prenylated flavonoids. LC-UV-HRMS/MS data of the most abundant presumed prenyl-flavonoid candidates were manually inspected for coelution and annotated to provide dereplication. Based on this, one putative prenylated (C5) dihydroflavonol (1) and four geranylated (C10) flavanones (2–5) were selected and successfully isolated. Structural elucidation employed UV spectroscopy, HRMS, and 1D as well as 2D NMR spectroscopy. Compounds 1 and 5 were isolated from a natural source for the first time and were named 6-prenyl-4′-O-methyltaxifolin and 3′,4′-O-dimethylpaulodiplacone A, respectively. Conclusions: This study highlights the combination of machine learning with analytical techniques to streamline natural product discovery via MS/MS and AI-guided pre-selection, efficient prioritization, and characterization of prenylated flavonoids, paving the way for a broader application in metabolomics and further exploration of prenylated constituents across diverse plant species. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Graphical abstract

33 pages, 7318 KB  
Article
Chemical Composition Antioxidant and Anti-Inflammatory Activities of Myrtus communis L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools
by Samia Belahcene, Widad Kebsa, Tomilola Victor Akingbade, Haruna Isiyaku Umar, Damilola Alex Omoboyowa, Abdulaziz A. Alshihri, Adel Abo Mansour, Abdulaziz Hassan Alhasaniah, Mohammed A. Oraig, Youssef Bakkour and Essaid Leghouchi
Molecules 2024, 29(4), 849; https://doi.org/10.3390/molecules29040849 - 14 Feb 2024
Cited by 8 | Viewed by 5243
Abstract
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in [...] Read more.
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL−1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

29 pages, 3373 KB  
Article
Seasonal Monitoring of Volatiles and Antioxidant Activity of Brown Alga Cladostephus spongiosus
by Sanja Radman, Martina Čagalj, Vida Šimat and Igor Jerković
Mar. Drugs 2023, 21(7), 415; https://doi.org/10.3390/md21070415 - 21 Jul 2023
Cited by 12 | Viewed by 6319
Abstract
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). [...] Read more.
Cladostephus spongiosus was harvested once a month during its growing season (from May to August) from the Adriatic Sea. Algal volatile organic compounds (VOCs) were obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). The effects of air drying and growing season on VOCs were determined. Two different extraction methods (ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE)) were used to obtain ethanolic extracts of C. spongiosus. In addition, the seasonal antioxidant potential of the extracts was determined, and non-volatile compounds were identified from the most potent antioxidant extract. Aliphatic compounds (e.g., pentadecane) were predominantly found by HS-SPME/GC-MS. Hydrocarbons were more than twice as abundant in the dry samples (except in May). Aliphatic alcohols (e.g., hexan-1-ol, octan-1-ol, and oct-1-en-3-ol) were present in high percentages and were more abundant in the fresh samples. Hexanal, heptanal, nonanal, and tridecanal were also found. Aliphatic ketones (octan-3-one, 6-methylhept-5-en-2-one, and (E,Z)-octa-3,5-dien-2-one) were more abundant in the fresh samples. Benzene derivatives (e.g., benzyl alcohol and benzaldehyde) were dominant in the fresh samples from May and August. (E)-Verbenol and p-cymen-8-ol were the most abundant in dry samples in May. HD revealed aliphatic compounds (e.g., heptadecane, pentadecanal, (E)-heptadec-8-ene, (Z)-heptadec-3-ene), sesquiterpenes (germacrene D, epi-bicyclosesquiphellandrene, gleenol), diterpenes (phytol, pachydictyol A, (E)-geranyl geraniol, cembra-4,7,11,15-tetraen-3-ol), and others. Among them, terpenes were the most abundant (except for July). Seasonal variations in the antioxidant activity of the ethanolic extracts were evaluated via different assays. MAE extracts showed higher peroxyl radical inhibition activity from 55.1 to 74.2 µM TE (Trolox equivalents). The highest reducing activity (293.8 µM TE) was observed for the May sample. Therefore, the May MAE extract was analysed via high-performance liquid chromatography with high-resolution mass spectrometry and electrospray ionisation (UHPLC-ESI-HRMS). In total, 17 fatty acid derivatives, 9 pigments and derivatives, and 2 steroid derivatives were found. The highest content of pheophorbide a and fucoxanthin, as well as the presence of other pigment derivatives, could be related to the observed antioxidant activity. Full article
Show Figures

Graphical abstract

21 pages, 4140 KB  
Article
Diplacone Isolated from Paulownia tomentosa Mature Fruit Induces Ferroptosis-Mediated Cell Death through Mitochondrial Ca2+ Influx and Mitochondrial Permeability Transition
by Myung-Ji Kang, Hyung Won Ryu, Eun Sol Oh, Yu Na Song, Yang Hoon Huh, Ji-Yoon Park, Seon Min Oh, Su-Yeon Lee, Yhun Jung Park, Doo-Young Kim, Hyunju Ro, Sung-Tae Hong, Su Ui Lee, Dong-Oh Moon and Mun-Ock Kim
Int. J. Mol. Sci. 2023, 24(8), 7057; https://doi.org/10.3390/ijms24087057 - 11 Apr 2023
Cited by 14 | Viewed by 3038
Abstract
The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent [...] Read more.
The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells. Full article
Show Figures

Figure 1

16 pages, 2112 KB  
Article
Investigation of Geraniol Biotransformation by Commercial Saccharomyces Yeast Strains by Two Headspace Techniques: Solid-Phase Microextraction Gas Chromatography/Mass Spectrometry (SPME-GC/MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS)
by Rebecca Roberts, Iuliia Khomenko, Graham T. Eyres, Phil Bremer, Patrick Silcock, Emanuela Betta and Franco Biasioli
Fermentation 2023, 9(3), 294; https://doi.org/10.3390/fermentation9030294 - 17 Mar 2023
Cited by 13 | Viewed by 5027
Abstract
Hop-derived volatile organic compounds (VOCs) and their transformation products significantly impact beer flavour and aroma. Geraniol, a key monoterpene alcohol in hops, has been reported to undergo yeast-modulated biotransformation into various terpenoids during fermentation, which impacts the citrus and floral aromas of the [...] Read more.
Hop-derived volatile organic compounds (VOCs) and their transformation products significantly impact beer flavour and aroma. Geraniol, a key monoterpene alcohol in hops, has been reported to undergo yeast-modulated biotransformation into various terpenoids during fermentation, which impacts the citrus and floral aromas of the finished beer. This study monitored the evolution of geraniol and its transformation products throughout fermentation to provide insight into differences as a function of yeast species and strain. The headspace concentration of VOCs produced during fermentation in model wort was measured using Solid-Phase Microextraction Gas Chromatography/Mass Spectrometry (SPME-GC/MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). In the absence of yeast, only geraniol was detected, and no terpenoid compounds were detected in geraniol-free ferments. During fermentation, the depletion of geraniol was closely followed by the detection of citronellol, citronellyl acetate and geranyl acetate. The concentration of the products and formation behaviour was yeast strain dependent. SPME-GC/MS provided confidence in compound identification. PTR-ToF-MS allowed online monitoring of these transformation products, showing when formation differed between Saccharomyces cerevisiae and Saccharomyces pastorianus yeasts. A better understanding of the ability of different yeast to biotransform hop terpenes will help brewers predict, control, and optimize the aroma of the finished beer. Full article
(This article belongs to the Special Issue Aroma Compound Evolution during Fermentation)
Show Figures

Figure 1

12 pages, 2553 KB  
Article
Comparative Transcriptome Analysis of High and Low Thujone-Producing Artemisia argyi Reveals Candidate Genes for Thujone Synthetic and Regulatory Pathway
by Tingting Zhao, Changjie Chen, Jinxin Li, Dandan Luo, Yuhuan Miao, Chun Gui, Qi Liu and Dahui Liu
Horticulturae 2023, 9(2), 232; https://doi.org/10.3390/horticulturae9020232 - 9 Feb 2023
Cited by 3 | Viewed by 2340
Abstract
Artemisia argyi Levl. et Van (A. argyi) is a traditional medicinal plant, which is widely used in health, food and medicine. Thujone is an important cyclic monoterpene derivative in the volatile oil of A. argyi leaves with multiple efficacy. Although the [...] Read more.
Artemisia argyi Levl. et Van (A. argyi) is a traditional medicinal plant, which is widely used in health, food and medicine. Thujone is an important cyclic monoterpene derivative in the volatile oil of A. argyi leaves with multiple efficacy. Although the thujone synthetic pathway has been preliminarily analyzed in very few species, genes related to the thujone content in A. argyi leaves remain largely unknown. In this study, we identify candidate genes involved in the synthesis and regulation of thujone content in A. argyi leaves by the comparative transcriptome analysis of two group materials with high and low thujone content. A total of 89 candidate genes related to thujone content are identified including one gene involved in the mevalonate pathway, three genes involved in the methylerythritol phosphate pathway, 19 genes involved in the metabolic process from geranyl pyrophosphate to thujone (four b-terpene synthase, five cytochrome P450, five dehydrogenase, and five reductase-encoding genes) and 66 transcription factor-encoding genes. Taken together, our results provide valuable gene resources for further analyzing the synthetic and regulatory pathway of thujone in A. argyi. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

16 pages, 2392 KB  
Article
Immunotoxicity and Anti-Inflammatory Characterizations of Prenylated Flavonoids—The Lipophilic 7-O-Terpenylated Wogonin
by Jin-Yi Wu, Lih-Geeng Chen, Chia-Wen Hu, Kuan-Chi Chiu, Wenhsin Lin, Pei-Chun Ho and Brian Bor-Chun Weng
Life 2022, 12(12), 2116; https://doi.org/10.3390/life12122116 - 15 Dec 2022
Cited by 6 | Viewed by 2225
Abstract
Wogonin, one of the exceptional bioactive flavonoids found abundant in the roots of Huang-Qin (Scutellaria baicalensis Georgi), is a popular health-preserving Chinese medicine. The therapeutic applications can be expanded by improving its bioavailability. The 7-O-terpenylated wogonin consisting one to three [...] Read more.
Wogonin, one of the exceptional bioactive flavonoids found abundant in the roots of Huang-Qin (Scutellaria baicalensis Georgi), is a popular health-preserving Chinese medicine. The therapeutic applications can be expanded by improving its bioavailability. The 7-O-terpenylated wogonin consisting one to three prenyl units are chemically synthesized for increasing lipophilic nature for efficient uptake, and also an attempt in mimicry of naturally scarce terpenylated flavonoids found in limited plant families and bee propolis. Wogonin (W) and its lipophilic nature prenyl wogonin (W5), geranyl wogonin (W10), and farnesyl wogonin (W15) were comparatively studied with structure-relationship in immunotoxicity of cell livability on lymphoid, myeloid, and somatic origins cell lines. Anti-inflammatory functions characterized with nitric oxide inhibition and intracellular ROS level of LPS-activated murine macrophage RAW264.7 were assessed. Wogonin and its terpenylated derivatives have selectively influenced livability of lymphoid origin cells but not myeloid and somatic origin cells. The mitotic protein survivin gene expressions analysis further supported the selective suppressions on lymphoid origin YAC-1 cells by wogonin and geranyl wogonin, while oppositely boosted survivin expressions in LPS-activated macrophages. Moreover, wogonin exhibits dose-dependent inhibition on the nitric oxide (NO) production and iNOS gene expressions of LPS-activated RAW264.7 cells. Terpenylated wogonin exhibits profoundly superior control in intracellular ROS level and a sustained action with sound cell integrity than the wogonin. The enhanced cellular uptake with higher lipophilicity to membrane of 7-O-terpenylated wogonin may pose an important biological nature in facilitating better bioavailability and specific immunomodulatory actions of the category of terpenylated flavonoids. The 7-O-terpenylated wogonin having biological merit of fast membrane lipid bilayer integration, lower effective concentration, and better preserving immune cells functions and livability deserved further in-depth investigations and their broadly therapeutic applications. Full article
Show Figures

Figure 1

18 pages, 2363 KB  
Article
Synthesis and Inhibitory Activity of Machaeridiol-Based Novel Anti-MRSA and Anti-VRE Compounds and Their Profiling for Cancer-Related Signaling Pathways
by Mallika Kumarihamy, Siddharth Tripathi, Premalatha Balachandran, Bharathi Avula, Jianping Zhao, Mei Wang, Maria M. Bennett, Jin Zhang, Mary A. Carr, K. Michael Lovell, Ocean I. Wellington, Mary E. Marquart, N. P. Dhammika Nanayakkara and Ilias Muhammad
Molecules 2022, 27(19), 6604; https://doi.org/10.3390/molecules27196604 - 5 Oct 2022
Cited by 6 | Viewed by 2944
Abstract
Three unique 5,6-seco-hexahydrodibenzopyrans (seco-HHDBP) machaeridiols A–C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E. faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, [...] Read more.
Three unique 5,6-seco-hexahydrodibenzopyrans (seco-HHDBP) machaeridiols A–C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E. faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, a series of novel machaeridiol-based analogs (117) were prepared by coupling stemofuran, pinosylvin, and resveratrol legends with monoterpene units R-(−)-α-phellandrene, (−)-p-mentha-2,8-diene-1-ol, and geraniol, and their inhibitory activities were profiled against MRSA ATCC 1708, VRE ATCC 700221, and cancer signaling pathways. Compounds 5 and 11 showed strong in vitro activities with MIC values of 2.5 μg/mL and 1.25 μg/mL against MRSA, respectively, and 2.50 μg/mL against VRE, while geranyl analog 14 was found to be moderately active (MIC 5 μg/mL). The reduction of the double bonds of the monoterpene unit of compound 5 resulted in 17, which had the same antibacterial potency (MIC 1.25 μg/mL and 2.50 μg/mL) as its parent, 5. Furthermore, a combination study between seco-HHDBP 17 and HHDBP machaeriol C displayed a synergistic effect with a fractional inhibitory concentrations (FIC) value of 0.5 against MRSA, showing a four-fold decrease in the MIC values of both 17 and machaeriol C, while no such effect was observed between vancomycin and 17. Compounds 11 and 17 were further tested in vivo against nosocomial MRSA at a single intranasal dose of 30 mg/kg in a murine model, and both compounds were not efficacious under these conditions. Finally, compounds 117 were profiled against a panel of luciferase genes that assessed the activity of complex cancer-related signaling pathways (i.e., transcription factors) using T98G glioblastoma multiforme cells. Among the compounds tested, the geranyl-substituted analog 14 exhibited strong inhibition against several signaling pathways, notably Smad, Myc, and Notch, with IC50 values of 2.17 μM, 1.86 μM, and 2.15 μM, respectively. In contrast, the anti-MRSA actives 5 and 17 were found to be inactive (IC50 > 20 μM) across the panel of these cancer-signaling pathways. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 3103 KB  
Article
Biological Evaluation of Alkyl Triphenylphosphonium Ostruthin Derivatives as Potential Anti-Inflammatory Agents Targeting the Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells
by Nghia Trong Vo, Eiichi Kusagawa, Kaori Nakano, Chihiro Moriwaki, Yasunobu Miyake, Sayaka Haruyama, Sayuri Fukuhara, Nhan Trung Nguyen, Phu Hoang Dang, Mai Thanh Thi Nguyen and Takao Kataoka
BioChem 2021, 1(2), 107-121; https://doi.org/10.3390/biochem1020010 - 2 Sep 2021
Cited by 4 | Viewed by 4796
Abstract
Ostruthin (6-geranyl-7-hydroxycoumarin) is one of the constituents isolated from Paramignya trimera and has been classified as a simple coumarin. We recently reported the synthesis of alkyl triphenylphosphonium (TPP) derivatives from ostruthin and evaluated their anticancer activities. In the present study, we demonstrated that [...] Read more.
Ostruthin (6-geranyl-7-hydroxycoumarin) is one of the constituents isolated from Paramignya trimera and has been classified as a simple coumarin. We recently reported the synthesis of alkyl triphenylphosphonium (TPP) derivatives from ostruthin and evaluated their anticancer activities. In the present study, we demonstrated that alkyl TPP ostruthin derivatives inhibited the up-regulation of cell-surface intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α) without affecting cell viability, while ostruthin itself exerted cytotoxicity against A549 cells. The heptyl TPP ostruthin derivative (termed OS8) attenuated the up-regulation of ICAM-1 mRNA expression at concentrations higher than 40 µM in TNF-α-stimulated A549 cells. OS8 inhibited TNF-α-induced nuclear factor κB (NF-κB)-responsive luciferase reporter activity at concentrations higher than 40 µM, but did not affect the translocation of the NF-κB subunit RelA in response to the TNF-α stimulation at concentrations up to 100 µM. A chromatin immunoprecipitation assay showed that OS8 at 100 µM prevented the binding of RelA to the ICAM-1 promoter. We also showed that OS8 at 100 µM inhibited the TNF-α-induced phosphorylation of RelA at Ser 536. Moreover, the TNF-α-induced phosphorylation of an inhibitor of NF-κB α and extracellular signal-regulated kinase was reduced by OS8. These results indicate that OS8 has potential as an anti-inflammatory agent that targets the NF-κB signaling pathway. Full article
Show Figures

Figure 1

20 pages, 2776 KB  
Review
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications
by Kai Hong, Limin Wang, Agbaka Johnpaul, Chenyan Lv and Changwei Ma
Int. J. Mol. Sci. 2021, 22(17), 9373; https://doi.org/10.3390/ijms22179373 - 29 Aug 2021
Cited by 10 | Viewed by 6179
Abstract
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these [...] Read more.
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

16 pages, 2579 KB  
Article
Studies on the Catalytic Properties of Crude Freeze-Dried Preparations of Yarrowia lipolytica Extracellular Lipases for Geranyl Ester Derivative Synthesis
by Karina Jasińska, Bartłomiej Zieniuk, Dorota Nowak and Agata Fabiszewska
Biomolecules 2021, 11(6), 839; https://doi.org/10.3390/biom11060839 - 4 Jun 2021
Cited by 2 | Viewed by 3689
Abstract
The study aimed to evaluate the impact of selected factors of the freeze-drying process on the hydrolytic and synthetic activity of the extracellular lipases of Y. lipolytica KKP 379 and to attempt the use of the crude enzyme preparation as a biocatalyst in [...] Read more.
The study aimed to evaluate the impact of selected factors of the freeze-drying process on the hydrolytic and synthetic activity of the extracellular lipases of Y. lipolytica KKP 379 and to attempt the use of the crude enzyme preparation as a biocatalyst in the synthesis of geranyl 4-hydroxyphenylpropanoate. Antioxidant and antibacterial properties of the geranyl ester derivative were also investigated in order to evaluate their usefulness as a novel food additive. The studies confirmed that freeze-drying was an effective method of dehydrating yeast supernatant and allowed for obtaining lyophilizates with low water activity from 0.055 to 0.160. The type and concentration of the additive (2–6% whey protein hydrolyzate, 0.5% and 1% ammonium sulphate) had a significant effect on the hydrolytic activity of enzyme preparations, while the selected variants of drying temperature during the freeze-drying process were not significant (10 °C and 50 °C). Low yield of geranyl 4-hydroxyphenylopropionate was shown when the lyophilized supernatant was used (5.3%), but the yield of ester synthesis increased when the freeze-dried Y. lipolytica yeast biomass was applied (47.9%). The study confirmed the antioxidant properties of the synthesized ester by the DPPH and CUPRAC methods, as well as higher antibacterial activity against tested bacteria than its precursor with 0.125 mM MIC (minimal inhibitory concentration) against L. monocytogenes. Full article
(This article belongs to the Special Issue Fungal Metabolism - Enzymes and Bioactive Compounds)
Show Figures

Figure 1

8 pages, 647 KB  
Communication
Semisynthesis of Selenoauraptene
by Serena Fiorito, Francesco Epifano, Lorenzo Marchetti and Salvatore Genovese
Molecules 2021, 26(9), 2798; https://doi.org/10.3390/molecules26092798 - 10 May 2021
Cited by 3 | Viewed by 2688
Abstract
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, [...] Read more.
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, the most of efforts have been directed to build pure synthetic Se containing molecules, while less attention have been devoted to Se-based semisynthetic products resembling natural compounds like terpenes, polyphenols, and alkaloids. The aim of this short communication is to report the synthesis of the first example of a Se-phenylpropanoids, namely selenoauraptene, containing a selenogeranyl side chain in position 7 of the umbelliferone core. The key step was the Newman-Kwart rearrangement to obtain a selenocarbamate in which the Se atom was directly attached to umbelliferone (replacing its 7-OH function) followed by hydrolysis to get diumbelliferyl diselenide, which was finally easily converted to the desired Se-geranyl derivative in quite a good overall yield (28.5%). The synthesized adduct displayed a greater antioxidant and a radical scavenger in vitro activity than parent auraptene. The procedure we describe herein, to the best of our knowledge for the first time in the literature, represents an easy-to-handle method for the synthesis of a wide array of seleno analogues of naturally occurring biologically active oxyprenylated secondary metabolites. Full article
Show Figures

Figure 1

15 pages, 4452 KB  
Article
2D Monomolecular Nanosheets Based on Thiacalixarene Derivatives: Synthesis, Solid State Self-Assembly and Crystal Polymorphism
by Alena A. Vavilova, Pavel L. Padnya, Timur A. Mukhametzyanov, Aleksey V. Buzyurov, Konstantin S. Usachev, Daut R. Islamov, Marat A. Ziganshin, Artur E. Boldyrev and Ivan I. Stoikov
Nanomaterials 2020, 10(12), 2505; https://doi.org/10.3390/nano10122505 - 14 Dec 2020
Cited by 5 | Viewed by 2617
Abstract
Synthetic organic 2D materials are attracting careful attention of researchers due to their excellent functionality in various applications, including storage batteries, catalysis, thermoelectricity, advanced electronics, superconductors, optoelectronics, etc. In this work, thiacalix[4]arene derivatives functionalized by geranyl fragments at the lower rim in cone [...] Read more.
Synthetic organic 2D materials are attracting careful attention of researchers due to their excellent functionality in various applications, including storage batteries, catalysis, thermoelectricity, advanced electronics, superconductors, optoelectronics, etc. In this work, thiacalix[4]arene derivatives functionalized by geranyl fragments at the lower rim in cone and 1,3-alternate conformations, that are capable of controlled self-assembly in a 2D nanostructures were synthesized. X-ray diffraction analysis showed the formation of 2D monomolecular-layer nanosheets from synthesized thiacalix[4]arenes, the distance between which depends on the stereoisomer used. It was established by DSC, FSC, and PXRD methods that the obtained macrocycles are capable of forming different crystalline polymorphs, moreover dimethyl sulphoxide (DMSO) is contributing to the formation of a more stable polymorph for cone stereoisomer. The obtained crystalline 2D materials based on synthesized thiacalix[4]arenes can find application in material science and medicine for the development of modern pharmaceuticals and new generation materials. Full article
(This article belongs to the Special Issue Design of Micro- and Nanoparticles: Self-Assembly and Application)
Show Figures

Graphical abstract

19 pages, 8892 KB  
Article
The Predicted Functional Compartmentation of Rice Terpenoid Metabolism by Trans-Prenyltransferase Structural Analysis, Expression and Localization
by Min Kyoung You, Yeo Jin Lee, Ji Su Yu and Sun-Hwa Ha
Int. J. Mol. Sci. 2020, 21(23), 8927; https://doi.org/10.3390/ijms21238927 - 25 Nov 2020
Cited by 7 | Viewed by 3507
Abstract
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with [...] Read more.
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with allylic substrates. The in silico structural comparative analyses of rice trans-PTs with 136 plant trans-PT genes allowed twelve rice PTs to be identified as GGPS_LSU (OsGGPS1), homomeric G(G)PS (OsGPS) and GGPS_SSU-II (OsGRP) in Group I; two solanesyl-PP synthase (OsSPS2 and 3) and two polyprenyl-PP synthases (OsSPS1 and 4) in Group II; and five FPSs (OsFPS1, 2, 3, 4 and 5) in Group III. Additionally, several residues in “three floors” for the chain length and several essential domains for enzymatic activities specifically varied in rice, potentiating evolutionarily rice-specific biochemical functions of twelve trans-PTs. Moreover, expression profiling and localization patterns revealed their functional compartmentation in rice. Taken together, we propose the predicted topology-based working model of rice PTs with corresponding terpene metabolites: GPP/GGPPs mainly in plastoglobuli, SPPs in stroma, PPPs in cytosol, mitochondria and chloroplast and FPPs in cytosol. Our findings could be suitably applied to metabolic engineering for producing functional terpene metabolites in rice systems. Full article
(This article belongs to the Special Issue Biological Networks of Specialized Metabolites and Plants)
Show Figures

Figure 1

21 pages, 15616 KB  
Article
Microbiota Modulates the Immunomodulatory Effects of Filifolinone on Atlantic Salmon
by Mick Parra, Daniela Espinoza, Natalia Valdes, Rodrigo Vargas, Alex Gonzalez, Brenda Modak and Mario Tello
Microorganisms 2020, 8(9), 1320; https://doi.org/10.3390/microorganisms8091320 - 30 Aug 2020
Cited by 10 | Viewed by 3280
Abstract
Filifolinone is an aromatic geranyl derivative, a natural compound isolated from Heliotropum sclerocarpum, which has immunomodulatory effects on Atlantic salmon, upregulating cytokines involved in Th1-type responses through a mechanism that remains unknown. In this work, we determined whether the immunomodulatory effects of [...] Read more.
Filifolinone is an aromatic geranyl derivative, a natural compound isolated from Heliotropum sclerocarpum, which has immunomodulatory effects on Atlantic salmon, upregulating cytokines involved in Th1-type responses through a mechanism that remains unknown. In this work, we determined whether the immunomodulatory effects of filifolinone depend on the host microbiotic composition. We evaluated the effect of filifolinone on immune genes and intestinal microbiotic composition of normal fish and fish previously treated with bacitracin/neomycin. Filifolinone induced the early expression of IFN-α1 and TGF-β, followed by the induction of TNF-α, IL-1β, and IFN-γ. A pre-treatment with antibiotics modified this effect, mainly changing the expression of IL-1β and IFN-γ. The evaluation of microbial diversity shows that filifolinone modifies the composition of intestinal microbiota, increasing the abundance of immunostimulating organisms like yeast and firmicutes. We identified 69 operational taxonomic units (OTUs) associated with filifolinone-induced IFN-γ. Our results indicate that filifolinone stimulates the immune system in two ways, one dependent on fish microbiota and the other not. To our knowledge, this is the first report of microbiota-dependent immunostimulation in Salmonids. Full article
Show Figures

Figure 1

Back to TopTop