Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,581)

Search Parameters:
Keywords = geometric relationship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6195 KiB  
Article
Digital Inspection Technology for Sheet Metal Parts Using 3D Point Clouds
by Jian Guo, Dingzhong Tan, Shizhe Guo, Zheng Chen and Rang Liu
Sensors 2025, 25(15), 4827; https://doi.org/10.3390/s25154827 - 6 Aug 2025
Abstract
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and [...] Read more.
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and the topological relationship is established by using a K-dimensional tree (KD tree). The pass-through filtering method is adopted to denoise the point cloud data. To preserve the fine features of the parts, an improved voxel grid method is proposed for the downsampling of the point cloud data. Feature points are extracted via the intrinsic shape signatures (ISS) algorithm and described using the fast point feature histograms (FPFH) algorithm. After rough registration with the sample consensus initial alignment (SAC-IA) algorithm, an initial position is provided for fine registration. The improved iterative closest point (ICP) algorithm, used for fine registration, can enhance the registration accuracy and efficiency. The greedy projection triangulation algorithm optimized by moving least squares (MLS) smoothing ensures surface smoothness and geometric accuracy. The reconstructed 3D model is projected onto a 2D plane, and the actual dimensions of the parts are calculated based on the pixel values of the sheet metal parts and the conversion scale. Experimental results show that the measurement error of this inspection system for three sheet metal workpieces ranges from 0.1416 mm to 0.2684 mm, meeting the accuracy requirement of ±0.3 mm. This method provides a reliable digital inspection solution for sheet metal parts. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

16 pages, 3189 KiB  
Article
Improved Block Element Method for Simulating Rock Failure
by Yan Han, Qingwen Ren, Lei Shen and Yajuan Yin
Appl. Sci. 2025, 15(15), 8636; https://doi.org/10.3390/app15158636 (registering DOI) - 4 Aug 2025
Abstract
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids [...] Read more.
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids for discrete modeling. This approach mitigates the distortion of damage paths caused by regular grids through the randomness of the Voronoi grids. As the innovation of this work, the iterative algorithm is combined with polygonal geometric features so that the area–perimeter fractal dimension can be introduced to optimize random Voronoi grids. The iterative control index can effectively improve the geometric characteristics of the grid while maintaining the necessary randomness. On this basis, a constitutive relation model that considers both normal and tangential damage is proposed. The entire process from damage initiation to macroscopic fracture failure in rocks is described using two independent damage surfaces and a damage relationship based on geometric mapping relationships. The analysis results are in good agreement with existing experimental data. Furthermore, the sensitivity method is used to analyze the influence of key mechanical parameters in the constitutive model. Full article
Show Figures

Figure 1

32 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 105
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

22 pages, 3304 KiB  
Article
The Mechanism by Which Colour Patch Characteristics Influence the Visual Landscape Quality of Rhododendron simsii Landscape Recreational Forests
by Yan Liu, Juyang Liao, Yaqi Huang, Qiaoyun Li, Linshi Wu, Xinyu Yi, Ling Wang and Chan Chen
Horticulturae 2025, 11(8), 898; https://doi.org/10.3390/horticulturae11080898 (registering DOI) - 3 Aug 2025
Viewed by 95
Abstract
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been [...] Read more.
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been insufficiently explored. In this study, we constructed a model of the relationship between landscape colour patches and the aesthetic value of such a forest, analysing the key factors driving changes in its landscape quality. A total of 1549 participants were asked to assess 16 groups of landscape photographs. The results showed that variations in perceived aesthetic quality were stimulated by colour patch dynamics and spatial heterogeneity. Utilising structural equation modelling (SEM), we identified key indicators synergistically influencing aesthetic quality, including the area percentage, shape, and distribution of colour patches, which demonstrated strong explanatory power (R2 = 0.83). The SEM also revealed that the red patch area, mean perimeter area ratio, and separation index are critical latent variables with standardised coefficients of 0.54, 0.65, and 0.62, respectively. These findings provide actionable design strategies: (1) optimising chromatic contrast through high-saturation patches, (2) controlling geometric complexity, and (3) improving spatial coherence. These results advance the theoretical framework for landscape aesthetic evaluation and offer practical guidance for landscape recreational forest management. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

14 pages, 1600 KiB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 117
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

24 pages, 2751 KiB  
Article
Double Wishbone Suspension: A Computational Framework for Parametric 3D Kinematic Modeling and Simulation Using Mathematica
by Muhammad Waqas Arshad, Stefano Lodi and David Q. Liu
Technologies 2025, 13(8), 332; https://doi.org/10.3390/technologies13080332 - 1 Aug 2025
Viewed by 138
Abstract
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in [...] Read more.
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in order to optimize its design. This requires efficient computational tools for parametric study. The development of effective computational tools that support parametric exploration stands as an essential requirement. Our research demonstrates a complete Wolfram Mathematica system that creates parametric 3D kinematic models and conducts simulations, performs analyses, and generates interactive visualizations of DWS systems. The system uses homogeneous transformation matrices to establish the spatial relationships between components relative to a global coordinate system. The symbolic geometric parameters allow designers to perform flexible design exploration and the kinematic constraints create an algebraic equation system. The numerical solution function NSolve computes linkage positions from input data, which enables fast evaluation of different design parameters. The integrated 3D visualization module based on Mathematica’s manipulate function enables users to see immediate results of geometric configurations and parameter effects while calculating exact 3D coordinates. The resulting robust, systematic, and flexible computational environment integrates parametric 3D design, kinematic simulation, analysis, and dynamic visualization for DWS, serving as a valuable and efficient tool for engineers during the design, development, assessment, and optimization phases of these complex automotive systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 233
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 - 31 Jul 2025
Viewed by 216
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

20 pages, 3903 KiB  
Article
Void Detection of Airport Concrete Pavement Slabs Based on Vibration Response Under Moving Load
by Xiang Wang, Ziliang Ma, Xing Hu, Xinyuan Cao and Qiao Dong
Sensors 2025, 25(15), 4703; https://doi.org/10.3390/s25154703 - 30 Jul 2025
Viewed by 231
Abstract
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including [...] Read more.
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including power spectral density (PSD), skewness, and frequency center. A finite element model incorporating contact and nonlinear constitutive relationships was established to simulate structural response under different void conditions. Based on the simulated dataset, a random forest (RF) model was developed to estimate void size using selected spectral energy indicators and geometric parameters. The results revealed that the RF model achieved strong predictive performance, with a high correlation between key features and void characteristics. This work demonstrates the feasibility of integrating simulation analysis, signal feature extraction, and machine learning to support intelligent diagnostics of concrete pavement health. Full article
Show Figures

Figure 1

16 pages, 5301 KiB  
Article
TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds
by Shanshan Ma, Xu Lu and Liang Zhang
Appl. Sci. 2025, 15(15), 8406; https://doi.org/10.3390/app15158406 - 29 Jul 2025
Viewed by 155
Abstract
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance [...] Read more.
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance recognition of tomato point clouds, based on the Pheno4D dataset. TSINet adopts an encoder–decoder architecture, where a shared encoder incorporates four Geometry-Aware Adaptive Feature Extraction Blocks (GAFEBs) to effectively capture local structures and geometric relationships in raw point clouds. Two parallel decoder branches are employed to independently decode shared high-level features for the respective segmentation tasks. Additionally, a Dual Attention-Based Feature Enhancement Module (DAFEM) is introduced to further enrich feature representations. The experimental results demonstrate that TSINet achieves superior performance in both semantic and instance segmentation, particularly excelling in challenging categories such as stems and large-scale instances. Specifically, TSINet achieves 97.00% mean precision, 96.17% recall, 96.57% F1-score, and 93.43% IoU in semantic segmentation and 81.54% mPrec, 81.69% mRec, 81.60% mCov, and 86.40% mWCov in instance segmentation. Compared with state-of-the-art methods, TSINet achieves balanced improvements across all metrics, significantly reducing false positives and false negatives while enhancing spatial completeness and segmentation accuracy. Furthermore, we conducted ablation studies and generalization tests to systematically validate the effectiveness of each TSINet component and the overall robustness of the model. This study provides an effective technological approach for high-throughput automated phenotyping of tomato plants, contributing to the advancement of intelligent agricultural management. Full article
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 175
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 11218 KiB  
Article
Solvatochromic and Computational Study of Three Benzo-[f]-Quinolinium Methylids with Photoinduced Charge Transfer
by Mihaela Iuliana Avadanei, Ovidiu Gabriel Avadanei and Dana Ortansa Dorohoi
Molecules 2025, 30(15), 3162; https://doi.org/10.3390/molecules30153162 - 29 Jul 2025
Viewed by 176
Abstract
The solvatochromic properties of 48 solvents of three benzo-[f]-quinolinium methylids (BfQs) were analyzed within the theories of the variational model and Abe’s model of the liquid. The electro-optical properties of BfQs in the first excited state were determined based on the charge transfer [...] Read more.
The solvatochromic properties of 48 solvents of three benzo-[f]-quinolinium methylids (BfQs) were analyzed within the theories of the variational model and Abe’s model of the liquid. The electro-optical properties of BfQs in the first excited state were determined based on the charge transfer process that occurs from the ylid carbon to the nitrogen atom. The dipole moments and the polarizabilities in the first excited state were calculated according to the two models. The quantum chemical calculations helped in understanding the relationship between the molecular structure and absorption properties of the ground state. It is concluded that several key parameters modulate the strength of the charge transfer and they work in synergy, and the most important are as follows: (i) isomerism around the single polar bond, and (ii) the properties of the solvent. The link between geometrical conformation and the zwitterionic character make the studied BfQs very sensitive chromophores for sensors and optical switching devices. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 4th Edition)
Show Figures

Graphical abstract

15 pages, 312 KiB  
Article
Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold
by Amit Kumar Rai, Majid Ali Choudhary, Mohammed Nisar and Foued Aloui
Symmetry 2025, 17(8), 1206; https://doi.org/10.3390/sym17081206 - 29 Jul 2025
Viewed by 213
Abstract
This paper explores novel inequalities for statistical submanifolds within the framework of the Norden golden-like statistical manifold. By leveraging the intrinsic properties of statistical manifolds and the structural richness of Norden golden geometry, we establish fundamental relationships between the intrinsic and extrinsic invariants [...] Read more.
This paper explores novel inequalities for statistical submanifolds within the framework of the Norden golden-like statistical manifold. By leveraging the intrinsic properties of statistical manifolds and the structural richness of Norden golden geometry, we establish fundamental relationships between the intrinsic and extrinsic invariants of submanifolds. The methodology involves deriving generalized Chen-type and δ(2,2) curvature inequalities using curvature tensor analysis and dual affine connections. A concrete example is provided to verify the theoretical framework. The novelty of this work lies in extending classical curvature inequalities to a newly introduced statistical structure, thereby opening new perspectives in the study of geometric inequalities in information geometry and related mathematical physics contexts. Full article
(This article belongs to the Section Mathematics)
31 pages, 3715 KiB  
Review
Cutting Force—Vibration Interactions in Precise—and Micromilling Processes: A Critical Review on Prediction Methods
by Szymon Wojciechowski, Marcin Suszyński, Rafał Talar, Vit Černohlávek and Jan Štěrba
Materials 2025, 18(15), 3539; https://doi.org/10.3390/ma18153539 - 28 Jul 2025
Viewed by 327
Abstract
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions [...] Read more.
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions in precise and micromilling manufacturing systems. Therefore, this literature review aims to fill this research gap and focuses on the critical literature review regarding the current state of the art within the prediction methods of cutting forces and machining system’s displacements/vibrations during precise and micromilling techniques. In the first part, a currently available cutting force, as well as the static and dynamic machining system displacement models applied in precise and micromilling conditions are presented. In the next stage, a relationship between the geometrical elements of cut and generated cutting forces and tool displacements are discussed, based on the recent literature. A subsequent part concerns the formulation of the generalized analytical models for a prediction of cutting forces and vibrations during precise and micromilling conditions. In the last stage, the conclusions and outlook are formulated based on the conducted analysis of the literature. In this context, this paper constitutes a synthetic work presenting current trends in the prediction of precise milling and micromilling mechanics. Full article
Show Figures

Figure 1

25 pages, 12944 KiB  
Article
A Step-by-Step Decoupling and Compensation Method for the Volumetric Error for a Gear Grinding Machine
by Kai Xu, Hao Huang, Rulong Tan, Zhiyu Ding and Xinyuan Wei
Actuators 2025, 14(8), 374; https://doi.org/10.3390/act14080374 - 26 Jul 2025
Viewed by 167
Abstract
Volumetric error decoupling is a critical prerequisite for effective error compensation. In this paper, the forward volumetric error model is established using the screw theory. Additionally, the Jacobian matrix based on the product of exponential is derived to construct the linear relationship between [...] Read more.
Volumetric error decoupling is a critical prerequisite for effective error compensation. In this paper, the forward volumetric error model is established using the screw theory. Additionally, the Jacobian matrix based on the product of exponential is derived to construct the linear relationship between the volumetric error and the axis motion and decouple the volumetric error model. To address the limitation of compensation motion, a step-by-step decoupling method is proposed, where attitude and position errors are compensated sequentially. After detecting the actual geometric errors of the grinding machine, the volumetric error can be determined, and the compensation motion commands for each axis are calculated to correct the volumetric error. The simulation result shows that the mean value of the comprehensive error ranges can be reduced from 19.7 μm to 1.8 μm, demonstrating the effectiveness of the proposed method. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

Back to TopTop