Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = genome-resolved metagenomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5133 KiB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Viewed by 575
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

17 pages, 1253 KiB  
Review
Metagenome-Assembled Genomes (MAGs): Advances, Challenges, and Ecological Insights
by Salvador Mirete, Mercedes Sánchez-Costa, Jorge Díaz-Rullo, Carolina González de Figueras, Pablo Martínez-Rodríguez and José Eduardo González-Pastor
Microorganisms 2025, 13(5), 985; https://doi.org/10.3390/microorganisms13050985 - 25 Apr 2025
Viewed by 1967
Abstract
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances [...] Read more.
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances have expanded the known microbial diversity, revealing novel taxa and metabolic pathways involved in key biogeochemical cycles, including carbon, nitrogen, and sulfur transformations. MAG-based studies have identified microbial lineages form Archaea and Bacteria responsible for methane oxidation, carbon sequestration in marine sediments, ammonia oxidation, and sulfur metabolism, highlighting their critical roles in ecosystem stability. From a sustainability perspective, MAGs provide essential insights for climate change mitigation, sustainable agriculture, and bioremediation. The ability to characterize microbial communities in diverse environments, including soil, aquatic ecosystems, and extreme habitats, enhances biodiversity conservation and supports the development of microbial-based environmental management strategies. Despite these advancements, challenges such as assembly biases, incomplete metabolic reconstructions, and taxonomic uncertainties persist. Continued improvements in sequencing technologies, hybrid assembly approaches, and multi-omics integration will further refine MAG-based analyses. As methodologies advance, MAGs will remain a cornerstone for understanding microbial contributions to global biogeochemical processes and developing sustainable interventions for environmental resilience. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

11 pages, 6131 KiB  
Article
Metagenomics and Metagenome-Assembled Genomes: Analysis of Cupei from Sichuan Baoning Vinegar, One of the Four Traditional Renowned Vinegars in China
by Jie Wu, Ning Zhao, Qin Li, Kui Zhao, Meiling Tu, Jianlong Li, Kaidi Hu, Shujuan Chen, Shuliang Liu and Aiping Liu
Foods 2025, 14(3), 398; https://doi.org/10.3390/foods14030398 - 26 Jan 2025
Cited by 2 | Viewed by 991
Abstract
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through [...] Read more.
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through deep metagenomic sequencing and metagenomic binning. Results revealed that the most prevalent phylum was Firmicutes, followed by Proteobacteria and unclassified Bacteria. The most abundant bacterial species was Acetilactobacillus jinshanensis, while Saccharomyces cerevisiae was the most prevalent fungal species. The predominant viral species were Hopescreekvirus LfeInf, Myoviridae sp., and Siphoviridae sp. A total of 1395 MAGs were reconstructed, with 660 of them annotated. The majority of MAGs resolved at the species level were attributed to Firmicutes (n = 308), with Acetilactobacillus jinshanensis being the most abundant. According to the average nucleotide identity values, 223 out of the 660 MAGs might represent novel species. The recovered MAGs exhibited biomarker genes indicative of the genetic potential to encode several important secondary metabolites. This study helps to uncover the microbial composition and functional potential of microbial genomes in Sichuan Baoning vinegar. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

17 pages, 3508 KiB  
Article
Improving Bacterial Metagenomic Research through Long-Read Sequencing
by Noah Greenman, Sayf Al-Deen Hassouneh, Latifa S. Abdelli, Catherine Johnston and Taj Azarian
Microorganisms 2024, 12(5), 935; https://doi.org/10.3390/microorganisms12050935 - 4 May 2024
Cited by 3 | Viewed by 3867
Abstract
Metagenomic sequencing analysis is central to investigating microbial communities in clinical and environmental studies. Short-read sequencing remains the primary approach for metagenomic research; however, long-read sequencing may offer advantages of improved metagenomic assembly and resolved taxonomic identification. To compare the relative performance for [...] Read more.
Metagenomic sequencing analysis is central to investigating microbial communities in clinical and environmental studies. Short-read sequencing remains the primary approach for metagenomic research; however, long-read sequencing may offer advantages of improved metagenomic assembly and resolved taxonomic identification. To compare the relative performance for metagenomic studies, we simulated short- and long-read datasets using increasingly complex metagenomes comprising 10, 20, and 50 microbial taxa. Additionally, we used an empirical dataset of paired short- and long-read data generated from mouse fecal pellets to assess real-world performance. We compared metagenomic assembly quality, taxonomic classification, and metagenome-assembled genome (MAG) recovery rates. We show that long-read sequencing data significantly improve taxonomic classification and assembly quality. Metagenomic assemblies using simulated long reads were more complete and more contiguous with higher rates of MAG recovery. This resulted in more precise taxonomic classifications. Principal component analysis of empirical data demonstrated that sequencing technology affects compositional results as samples clustered by sequence type, not sample type. Overall, we highlight strengths of long-read metagenomic sequencing for microbiome studies, including improving the accuracy of classification and relative abundance estimates. These results will aid researchers when considering which sequencing approaches to use for metagenomic projects. Full article
(This article belongs to the Special Issue Gut Microbiota: Metagenomics to Study Ecology)
Show Figures

Figure 1

9 pages, 2277 KiB  
Communication
Related in Death? Further Insights on the Curious Case of Bishop Peder Winstrup and His Grandchild’s Burial
by Maja Krzewińska, Ricardo Rodríguez-Varela, Reyhan Yaka, Mário Vicente, Göran Runfeldt, Michael Sager, Caroline Ahlström Arcini, Torbjörn Ahlström, Niklas Hertzman, Jan Storå and Anders Götherström
Heritage 2024, 7(2), 576-584; https://doi.org/10.3390/heritage7020027 - 25 Jan 2024
Viewed by 5191
Abstract
In 2021, we published the results of genomic analyses carried out on the famous bishop of Lund, Peder Winstrup, and the mummified remains of a 5–6-month-old fetus discovered in the same burial. We concluded that the two individuals were second-degree relatives and explored [...] Read more.
In 2021, we published the results of genomic analyses carried out on the famous bishop of Lund, Peder Winstrup, and the mummified remains of a 5–6-month-old fetus discovered in the same burial. We concluded that the two individuals were second-degree relatives and explored the genealogy of Peder Winstrup to further understand the possible relation between them. Through this analysis, we found that the boy was most probably Winstrup’s grandson and that the two were equally likely related either through Winstrup’s son, Peder, or his daughter, Anna Maria von Böhnen. To further resolve the specific kinship relation, we generated more genomic data from both Winstrup and the boy and implemented more recently published analytical tools in detailed Y chromosome- and X chromosome-based kinship analyses to distinguish between the competing hypotheses regarding maternal and paternal relatedness. We found that the individuals’ Y chromosome lineages belonged to different sub-lineages and that the X-chromosomal kinship coefficient calculated between the two individuals were elevated, suggesting a grandparent–grandchild relation through a female, i.e., Anna Maria von Böhnen. Finally, we also performed metagenomic analyses, which did not identify any pathogens that could be unambiguously associated with the fatalities. Full article
(This article belongs to the Special Issue Advances in Archaeology and Anthropology of the Ancient World)
Show Figures

Figure 1

24 pages, 14186 KiB  
Article
Genome-Resolved Metagenomics of Nitrogen Transformations in the Switchgrass Rhizosphere Microbiome on Marginal Lands
by Richard Allen White, Aaron Garoutte, Emily E. Mclachlan, Lisa K. Tiemann, Sarah Evans and Maren L. Friesen
Agronomy 2023, 13(5), 1294; https://doi.org/10.3390/agronomy13051294 - 3 May 2023
Cited by 4 | Viewed by 3567
Abstract
Switchgrass (Panicum virgatum L.) remains the preeminent American perennial (C4) bioenergy crop for cellulosic ethanol, that could help displace over a quarter of the US current petroleum consumption. Intriguingly, there is often little response to nitrogen fertilizer once stands are established. The [...] Read more.
Switchgrass (Panicum virgatum L.) remains the preeminent American perennial (C4) bioenergy crop for cellulosic ethanol, that could help displace over a quarter of the US current petroleum consumption. Intriguingly, there is often little response to nitrogen fertilizer once stands are established. The rhizosphere microbiome plays a critical role in nitrogen cycling and overall plant nutrient uptake. We used high-throughput metagenomic sequencing to characterize the switchgrass rhizosphere microbial community before and after a nitrogen fertilization event for established stands on marginal land. We examined community structure and bulk metabolic potential, and resolved 29 individual bacteria genomes via metagenomic de novo assembly. Community structure and diversity were not significantly different before and after fertilization; however, the bulk metabolic potential of carbohydrate-active enzymes was depleted after fertilization. We resolved 29 metagenomic assembled genomes, including some from the ‘most wanted’ soil taxa such as Verrucomicrobia, Candidate phyla UBA10199, Acidobacteria (rare subgroup 23), Dormibacterota, and the very rare Candidatus Eisenbacteria. The Dormibacterota (formally candidate division AD3) we identified have the potential for autotrophic CO utilization, which may impact carbon partitioning and storage. Our study also suggests that the rhizosphere microbiome may be involved in providing associative nitrogen fixation (ANF) via the novel diazotroph Janthinobacterium to switchgrass. Full article
(This article belongs to the Special Issue Plant–Microbiome–Climate Interactions and Biogeography)
Show Figures

Figure 1

18 pages, 2998 KiB  
Article
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics
by Julie L. Meyer, Sarath P. Gunasekera, Anya L. Brown, Yousong Ding, Stephanie Miller, Max Teplitski and Valerie J. Paul
Mar. Drugs 2023, 21(2), 76; https://doi.org/10.3390/md21020076 - 22 Jan 2023
Cited by 11 | Viewed by 5535
Abstract
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the [...] Read more.
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms. Full article
(This article belongs to the Special Issue Reef Ecology and Marine Drug Discovery)
Show Figures

Figure 1

15 pages, 1267 KiB  
Article
Metagenomic Strain-Typing Combined with Isolate Sequencing Provides Increased Resolution of the Genetic Diversity of Campylobacter jejuni Carriage in Wild Birds
by Malte Herold, Louise Hock, Christian Penny, Cécile Walczak, Fatu Djabi, Henry-Michel Cauchie and Catherine Ragimbeau
Microorganisms 2023, 11(1), 121; https://doi.org/10.3390/microorganisms11010121 - 3 Jan 2023
Cited by 1 | Viewed by 3355
Abstract
As the world’s leading cause of human gastro-enteritis, the food- and waterborne pathogen Campylobacter needs to be intensively monitored through a One Health approach. Particularly, wild birds have been hypothesized to contribute to the spread of human clinical recurring C. jejuni genotypes across [...] Read more.
As the world’s leading cause of human gastro-enteritis, the food- and waterborne pathogen Campylobacter needs to be intensively monitored through a One Health approach. Particularly, wild birds have been hypothesized to contribute to the spread of human clinical recurring C. jejuni genotypes across several countries. A major concern in studying epidemiological dynamics is resolving the large genomic diversity of strains circulating in the environment and various reservoirs, challenging to achieve with isolation techniques. Here, we applied a passive-filtration method to obtain isolates and in parallel recovered genotypes from metagenomic sequencing data from associated filter sweeps. For genotyping mixed strains, a reference-based computational workflow to predict allelic profiles of nine extended-MLST loci was utilized. We validated the pipeline by sequencing artificial mixtures of C. jejuni strains and observed the highest prediction accuracy when including obtained isolates as references. By analyzing metagenomic samples, we were able to detect over 20% additional genetic diversity and observed an over 50% increase in the potential to connect genotypes across wild-bird samples. With an optimized filtration method and a computational approach for genotyping strain mixtures, we provide the foundation for future studies assessing C. jejuni diversity in environmental and clinical settings at improved throughput and resolution. Full article
Show Figures

Figure 1

22 pages, 1301 KiB  
Article
Metagenomics to Detect and Characterize Viruses in Food Samples at Genome Level? Lessons Learnt from a Norovirus Study
by Florence E. Buytaers, Bavo Verhaegen, Mathieu Gand, Jolien D’aes, Kevin Vanneste, Nancy H. C. Roosens, Kathleen Marchal, Sarah Denayer and Sigrid C. J. De Keersmaecker
Foods 2022, 11(21), 3348; https://doi.org/10.3390/foods11213348 - 25 Oct 2022
Cited by 4 | Viewed by 3083
Abstract
In this proof-of-concept study on food contaminated with norovirus, we investigated the feasibility of metagenomics as a new method to obtain the whole genome sequence of the virus and perform strain level characterization but also relate to human cases in order to resolve [...] Read more.
In this proof-of-concept study on food contaminated with norovirus, we investigated the feasibility of metagenomics as a new method to obtain the whole genome sequence of the virus and perform strain level characterization but also relate to human cases in order to resolve foodborne outbreaks. We tested several preparation methods to determine if a more open sequencing approach, i.e., shotgun metagenomics, or a more targeted approach, including hybrid capture, was the most appropriate. The genetic material was sequenced using Oxford Nanopore technologies with or without adaptive sampling, and the data were analyzed with an in-house bioinformatics workflow. We showed that a viral genome sequence could be obtained for phylogenetic analysis with shotgun metagenomics if the contamination load was sufficiently high or after hybrid capture for lower contamination. Relatedness to human cases goes well beyond the results obtained with the current qPCR methods. This workflow was also tested on a publicly available dataset of food spiked with norovirus and hepatitis A virus. This allowed us to prove that we could detect even fewer genome copies and two viruses present in a sample using shotgun metagenomics. We share the lessons learnt on the satisfactory and unsatisfactory results in an attempt to advance the field. Full article
(This article belongs to the Special Issue Novel Approaches for Detecting Foodborne Pathogens)
Show Figures

Figure 1

35 pages, 2002 KiB  
Review
Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics
by Konstantinos Tsiantas, Spyridon J. Konteles, Eftichia Kritsi, Vassilia J. Sinanoglou, Thalia Tsiaka and Panagiotis Zoumpoulakis
Int. J. Mol. Sci. 2022, 23(8), 4070; https://doi.org/10.3390/ijms23084070 - 7 Apr 2022
Cited by 19 | Viewed by 4426
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence [...] Read more.
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota. Full article
(This article belongs to the Special Issue Human Gut Microbiome and Diet in Health and Disease)
Show Figures

Figure 1

17 pages, 3783 KiB  
Article
Plastid Genome of Equisetum xylochaetum from the Atacama Desert, Chile and the Relationships of Equisetum Based on Frequently Used Plastid Genes and Network Analysis
by Anchittha Satjarak, Linda E. Graham, Marie T. Trest and Patricia Arancibia-Avila
Plants 2022, 11(7), 1001; https://doi.org/10.3390/plants11071001 - 6 Apr 2022
Viewed by 3029
Abstract
The modern pteridophyte genus Equisetum is the only survivor of Sphenopsida, an ancient clade known from the Devonian. This genus, of nearly worldwide distribution, comprises approximately 15 extant species. However, genomic information is limited. In this study, we assembled the complete chloroplast genome [...] Read more.
The modern pteridophyte genus Equisetum is the only survivor of Sphenopsida, an ancient clade known from the Devonian. This genus, of nearly worldwide distribution, comprises approximately 15 extant species. However, genomic information is limited. In this study, we assembled the complete chloroplast genome of the giant species Equisetum xylochaetum from a metagenomic sequence and compared the plastid genome structure and protein-coding regions with information available for two other Equisetum species using network analysis. Equisetum chloroplast genomes showed conserved traits of quadripartite structure, gene content, and gene order. Phylogenetic analysis based on plastome protein-coding regions corroborated previous reports that Equisetum is monophyletic, and that E. xylochaetum is more closely related to E. hyemale than to E. arvense. Single-gene phylogenetic estimation and haplotype analysis showed that E. xylochaetum belonged to the subgenus Hippochaete. Single-gene haplotype analysis revealed that E. arvense, E. hyemale, E. myriochaetum, and E. variegatum resolved more than one haplotype per species, suggesting the presence of a high diversity or a high mutation rate of the corresponding nucleotide sequence. Sequences from E. bogotense appeared as a distinct group of haplotypes representing the subgenus Paramochaete that diverged from Hippochaete and Equisetum. In addition, the taxa that were frequently located at the joint region of the map were E. scirpoides and E. pratense, suggesting the presence of some plastome characters among the Equiseum subgenera. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

14 pages, 1099 KiB  
Article
The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples
by Mitchell T. Caudill and Kelly A. Brayton
Microorganisms 2022, 10(3), 605; https://doi.org/10.3390/microorganisms10030605 - 12 Mar 2022
Cited by 46 | Viewed by 5904
Abstract
With the advent of cheaper, high-throughput sequencing technologies, the ability to survey biodiversity in previously unexplored niches and geographies has expanded massively. Within Anaplasma, a genus containing several intra-hematopoietic pathogens of medical and economic importance, at least 25 new species have been [...] Read more.
With the advent of cheaper, high-throughput sequencing technologies, the ability to survey biodiversity in previously unexplored niches and geographies has expanded massively. Within Anaplasma, a genus containing several intra-hematopoietic pathogens of medical and economic importance, at least 25 new species have been proposed since the last formal taxonomic organization. Given the obligate intracellular nature of these bacteria, none of these proposed species have been able to attain formal standing in the nomenclature per the International Code of Nomenclature of Prokaryotes rules. Many novel species’ proposals use sequence data obtained from targeted or metagenomic PCR studies of only a few genes, most commonly the 16S rRNA gene. We examined the utility of the 16S rRNA gene sequence for discriminating Anaplasma samples to the species level. We find that while the genetic diversity of the genus Anaplasma appears greater than appreciated in the last organization of the genus, caution must be used when attempting to resolve to a species descriptor from the 16S rRNA gene alone. Specifically, genomically distinct species have similar 16S rRNA gene sequences, especially when only partial amplicons of the 16S rRNA are used. Furthermore, we provide key bases that allow classification of the formally named species of Anaplasma. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

23 pages, 6683 KiB  
Article
Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature
by Hiie Nõlvak, Nga Phuong Dang, Marika Truu, Angela Peeb, Kertu Tiirik, Megan O’Sadnick and Jaak Truu
Microorganisms 2021, 9(12), 2425; https://doi.org/10.3390/microorganisms9122425 - 24 Nov 2021
Cited by 26 | Viewed by 5198
Abstract
The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, [...] Read more.
The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe. Full article
(This article belongs to the Special Issue Oil Biodegradation and Bioremediation in Cold Marine Environment)
Show Figures

Figure 1

21 pages, 4266 KiB  
Article
Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
by Kelly J. Hidalgo, Isabel N. Sierra-Garcia, German Zafra and Valéria M. de Oliveira
Microorganisms 2021, 9(9), 1812; https://doi.org/10.3390/microorganisms9091812 - 26 Aug 2021
Cited by 14 | Viewed by 5560
Abstract
Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of [...] Read more.
Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. The analysis of the potential functional core in the reservoirs showed that the microbiota was specialized for each site, with 31.7% of the total KEGG orthologies annotated as functions (1690 genes) common to all oil fields, while 18% of the functions were site-specific, i.e., present only in one of the oil fields. The oil reservoirs with a lower level of intervention were the most similar to the potential functional core, while the oil fields with a long history of water injection had greater variation in functional profile. These results show how key microorganisms and their functions respond to the distinct physicochemical parameters and interventions of the oil field operations such as water injection and expand the knowledge of biogeochemical transformations in these ecosystems. Full article
(This article belongs to the Special Issue Petroleum Microbiology)
Show Figures

Figure 1

12 pages, 1371 KiB  
Article
Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata)
by Carolina Osuna-Mascaró, Jorge Doña, Kevin P. Johnson and Manuel de Rojas
Microorganisms 2021, 9(8), 1734; https://doi.org/10.3390/microorganisms9081734 - 14 Aug 2021
Cited by 2 | Viewed by 3193
Abstract
Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae [...] Read more.
Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae as disease vectors in wild bird populations remains uninvestigated, with studies of the microbiomes of Rhinonyssidae being almost non-existent. In the nasal mite (Tinaminyssus melloi) from rock doves (Columba livia), a previous study found evidence of a highly abundant putatively endosymbiotic bacteria from Class Alphaproteobacteria. Here, we expanded the sample size of this species (two different hosts- ten nasal mites from two independent samples per host), incorporated contamination controls, and increased sequencing depth in shotgun sequencing and genome-resolved metagenomic analyses. Our goal was to increase the information regarding this mite species and its putative endosymbiont. We obtained a metagenome assembled genome (MAG) that was estimated to be 98.1% complete and containing only 0.9% possible contamination. Moreover, the MAG has characteristics typical of endosymbionts (namely, small genome size an AT bias). Overall, our results support the presence of a potential endosymbiont, which is the first described for avian nasal mites to date, and improve the overall understanding of the microbiota inhabiting these mites. Full article
(This article belongs to the Special Issue Avian Pathogens)
Show Figures

Figure 1

Back to TopTop