Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = generalized Laguerre–Volterra model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1340 KB  
Article
A Parsimonious Granger Causality Formulation for Capturing Arbitrarily Long Multivariate Associations
by Andrea Duggento, Gaetano Valenza, Luca Passamonti, Salvatore Nigro, Maria Giovanna Bianco, Maria Guerrisi, Riccardo Barbieri and Nicola Toschi
Entropy 2019, 21(7), 629; https://doi.org/10.3390/e21070629 - 26 Jun 2019
Cited by 1 | Viewed by 4391
Abstract
High-frequency neuroelectric signals like electroencephalography (EEG) or magnetoencephalography (MEG) provide a unique opportunity to infer causal relationships between local activity of brain areas. While causal inference is commonly performed through classical Granger causality (GC) based on multivariate autoregressive models, this method may encounter [...] Read more.
High-frequency neuroelectric signals like electroencephalography (EEG) or magnetoencephalography (MEG) provide a unique opportunity to infer causal relationships between local activity of brain areas. While causal inference is commonly performed through classical Granger causality (GC) based on multivariate autoregressive models, this method may encounter important limitations (e.g., data paucity) in the case of high dimensional data from densely connected systems like the brain. Additionally, physiological signals often present long-range dependencies which commonly require high autoregressive model orders/number of parameters. We present a generalization of autoregressive models for GC estimation based on Wiener–Volterra decompositions with Laguerre polynomials as basis functions. In this basis, the introduction of only one additional global parameter allows to capture arbitrary long dependencies without increasing model order, hence retaining model simplicity, linearity and ease of parameters estimation. We validate our method in synthetic data generated from families of complex, densely connected networks and demonstrate superior performance as compared to classical GC. Additionally, we apply our framework to studying the directed human brain connectome through MEG data from 89 subjects drawn from the Human Connectome Project (HCP) database, showing that it is able to reproduce current knowledge as well as to uncover previously unknown directed influences between cortical and limbic brain regions. Full article
(This article belongs to the Special Issue Information Dynamics in Brain and Physiological Networks)
Show Figures

Figure 1

22 pages, 6929 KB  
Article
A Sparse Multiwavelet-Based Generalized Laguerre–Volterra Model for Identifying Time-Varying Neural Dynamics from Spiking Activities
by Song Xu, Yang Li, Tingwen Huang and Rosa H. M. Chan
Entropy 2017, 19(8), 425; https://doi.org/10.3390/e19080425 - 20 Aug 2017
Cited by 9 | Viewed by 5973
Abstract
Modeling of a time-varying dynamical system provides insights into the functions of biological neural networks and contributes to the development of next-generation neural prostheses. In this paper, we have formulated a novel sparse multiwavelet-based generalized Laguerre–Volterra (sMGLV) modeling framework to identify the time-varying [...] Read more.
Modeling of a time-varying dynamical system provides insights into the functions of biological neural networks and contributes to the development of next-generation neural prostheses. In this paper, we have formulated a novel sparse multiwavelet-based generalized Laguerre–Volterra (sMGLV) modeling framework to identify the time-varying neural dynamics from multiple spike train data. First, the significant inputs are selected by using a group least absolute shrinkage and selection operator (LASSO) method, which can capture the sparsity within the neural system. Second, the multiwavelet-based basis function expansion scheme with an efficient forward orthogonal regression (FOR) algorithm aided by mutual information is utilized to rapidly capture the time-varying characteristics from the sparse model. Quantitative simulation results demonstrate that the proposed sMGLV model in this paper outperforms the initial full model and the state-of-the-art modeling methods in tracking performance for various time-varying kernels. Analyses of experimental data show that the proposed sMGLV model can capture the timing of transient changes accurately. The proposed framework will be useful to the study of how, when, and where information transmission processes across brain regions evolve in behavior. Full article
(This article belongs to the Special Issue Entropy in Signal Analysis)
Show Figures

Figure 1

Back to TopTop