Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = gas-liquid sulfonation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2963 KB  
Review
Valorization of Pistachio Green Hull: Advances in Extraction and Characterization of Phenolic Compounds
by Andrés Javier Ordoñez-Cano, Ulises Ramírez-Esparza, Mónica Alvarado-González, Ramiro Baeza-Jiménez, José Carlos Espinoza-Hicks, Lilia Arely Prado-Barragán and José Juan Buenrostro-Figueroa
Processes 2025, 13(12), 3761; https://doi.org/10.3390/pr13123761 - 21 Nov 2025
Viewed by 593
Abstract
Substantial agro-industrial waste is generated by the food industry, including pistachio green hulls (PGH), which can constitute 40% to 60% of the fresh fruit weight. This by-product contains bioactive functional components, especially phenolic compounds (PCs). An overview of research focused on PCs extracted [...] Read more.
Substantial agro-industrial waste is generated by the food industry, including pistachio green hulls (PGH), which can constitute 40% to 60% of the fresh fruit weight. This by-product contains bioactive functional components, especially phenolic compounds (PCs). An overview of research focused on PCs extracted from PGH is presented, highlighting their chemical composition, extraction methods, compound identification, and antioxidant and antibacterial activities. Extraction techniques such as ultrasound, microwave-assisted extraction, and solid-state fermentation are utilized, with mild organic solvents like water, ethanol, methanol, or their mixtures employed. The quantification of PCs is commonly performed using the Folin–Ciocalteu assay, HCl-Butanol technique, and aluminum chloride colorimetric assays. Furthermore, identification of compounds is generally accomplished through high-performance liquid chromatography (HPLC) or gas chromatography (GC), often coupled with mass spectrometry or photodiode-array detectors to enhance accuracy and reliability. Gallic acid, kaempferol, quercetin, cyanidin, and catechin are the main PCs identified, with their antioxidant activity validated by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (ferric-reducing antioxidant power) assays. Antibacterial effectiveness has been demonstrated against bacteria using disk diffusion and minimum inhibitory concentration methods. These findings indicate potential uses of PGH by-products in the food, cosmetic, and pharmaceutical industries, contributing to a circular economy and enhancing agro-industrial waste management. Full article
Show Figures

Figure 1

22 pages, 2831 KB  
Article
Simulation of Absorption and Flash Evaporation for Natural Gas Desulfurization
by Chaoyue Yang, Jingwen Xue, Yong Jia, Ke Liu, Chunyang Zhang and Zongshe Liu
Processes 2025, 13(11), 3504; https://doi.org/10.3390/pr13113504 - 31 Oct 2025
Viewed by 361
Abstract
A rigorous rate-based absorption model integrated with an improved thermodynamic framework was developed to simulate natural gas desulfurization using TMS–MDEA (Tetramethylene Sulfone–Methyldiethanolamine) aqueous solutions. The model was validated against 50 sets of industrial and experimental data, achieving R2 values above 0.98 and [...] Read more.
A rigorous rate-based absorption model integrated with an improved thermodynamic framework was developed to simulate natural gas desulfurization using TMS–MDEA (Tetramethylene Sulfone–Methyldiethanolamine) aqueous solutions. The model was validated against 50 sets of industrial and experimental data, achieving R2 values above 0.98 and average deviations within 5%. The model was formulated for steady-state operation of a trayed absorber integrated with flash and packed-bed regeneration and applicable over industrially relevant ranges (absorber pressure 3–6.4 MPa; gas–liquid ratio 350–720; flash pressure 0.3–0.6 MPa; packing height ≥ 3 m). The results indicate that H2S can be removed almost completely (>99.9%); CO2 and COS achieve 70–85% and 75–83% removal, respectively; and CH3SH removal exceeds 90% under typical conditions. Parametric analysis revealed that higher tray numbers, weir heights, and pressures enhance absorption efficiency, whereas hydrocarbon solubility increases with carbon number and is strongly affected by pressure and the gas–liquid ratio. In the desorption section, flash regeneration efficiently strips light hydrocarbons, with decreasing desorption efficiency from CH4 to C6H14. This study provides quantitative insights into the coupled absorption–desorption process and offers practical guidance for process design, solvent selection, and energy-efficient operation in natural gas purification. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

20 pages, 991 KB  
Review
Linking Analysis to Atmospheric PFAS: An Integrated Framework for Exposure Assessment, Health Risks, and Future Management Strategies
by Myoungki Song, Hajeong Jeon and Min-Suk Bae
Appl. Sci. 2025, 15(19), 10540; https://doi.org/10.3390/app151910540 - 29 Sep 2025
Viewed by 1038
Abstract
Per- and polyfluoroalkyl substances (PFASs) are highly chemically stable synthetic compounds. They are widely used in industrial and commercial sectors due to their ability to repel water and oil, thermal stability, and surfactant properties. However, this stability results in environmental persistence and bioaccumulation, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are highly chemically stable synthetic compounds. They are widely used in industrial and commercial sectors due to their ability to repel water and oil, thermal stability, and surfactant properties. However, this stability results in environmental persistence and bioaccumulation, posing significant health risks as PFASs eventually find their way into environmental media. Key PFAS compounds, including PerFluoroOctanoic Acid (PFOA), PerFluoroOctane Sulfonic acid (PFOS), and PerFluoroHexane Sulfonic acid (PFHxS), have been linked to hepatotoxicity, immunotoxicity, neurotoxicity, and endocrine disruption. In response to the health threats these substances pose, global regulatory measures, such as the Stockholm Convention restrictions and national drinking water standards, have been implemented to reduce PFAS exposure. Despite these efforts, a lack of universally accepted definitions or comprehensive inventories of PFAS compounds hampers the effective management of these substances. As definitions differ across regulatory bodies, research and policy integration have become complicated. PFASs are broadly categorized as either perfluoroalkyl acids (PFAAs), precursors, or other fluorinated substances; however, PFASs encompass over 5000 distinct compounds, many of which are poorly characterized. PFAS contamination arises from direct industrial emissions and indirect environmental formation, these substances have been detected in water, soil, and even air samples from all over the globe, including from remote regions like Antarctica. Analytical methods, such as primarily liquid and gas chromatography coupled with tandem mass spectrometry, have advanced PFAS detection. However, standardized monitoring protocols remain inadequate. Future management requires unified definitions, expanded monitoring efforts, and standardized methodologies to address the persistent environmental and health impacts of PFAS. This review underscores the need for improved regulatory frameworks and further research. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

17 pages, 1339 KB  
Article
Bioconversion of Deoxynivalenol by Mealworm (Tenebrio molitor) Larvae: Implications for Feed Safety and Nutritional Value
by Marcin Wróbel, Michał Dąbrowski, Michał Łuczyński, Krzysztof Waśkiewicz, Tadeusz Bakuła, Łukasz Nowicki and Łukasz Zielonka
Toxins 2025, 17(10), 478; https://doi.org/10.3390/toxins17100478 - 25 Sep 2025
Viewed by 589
Abstract
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and [...] Read more.
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and the nutritional implications are still not fully understood. In this study, T. molitor larvae were reared for two weeks on diets containing DON at 663 or 913 µg/kg, and their biomass was analysed using Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF) for DON metabolites and free amino acids, as well as Gas Chromatography–Flame Ionization Detector (GC-FID) for fatty acid profiles. Larvae metabolised DON via multiple pathways, including sulfonation, glucuronidation, sulfation, glucosylation, and de-epoxidation, with a time- and dose-dependent shift towards glucosylation and de-epoxidation. DON exposure significantly reduced the levels of essential amino acids such as methionine, lysine, phenylalanine, and isoleucine, and lowered metabolic intermediates like aspartic and glutamic acid. Conversely, prolonged DON exposure increased linoleic acid levels in larval fat, indicating altered lipid metabolism. These findings demonstrate that T. molitor larvae detoxify DON but incur measurable metabolic costs, leading to changes in amino acid and fatty acid profiles. The dual effect—reduction of toxin levels and nutritional shifts—highlights both the potential and the challenges of using insects for sustainable feed production. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

36 pages, 6718 KB  
Article
Transylvanian Grape Pomaces as Sustainable Sources of Antioxidant Phenolics and Fatty Acids—A Study of White and Red Cultivars
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Maria Comșa, Ioana Corina Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Antioxidants 2025, 14(10), 1152; https://doi.org/10.3390/antiox14101152 - 23 Sep 2025
Viewed by 809
Abstract
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP [...] Read more.
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP samples from Transylvanian cultivars. Polyphenolic content was determined using the Folin–Ciocalteu method and high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC–DAD–ESI MS) analysis. Fatty acid composition was analyzed using gas chromatography with flame ionization detection (GC–FID). Antioxidant capacity was assessed using five methods, which included the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2′-azino-bis (3-ethylbenzothialzoline-6-sulfonic acid) (ABTS) radical scavenging, ferric-reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), and reducing power (RP) assays. Additionally, all extracts were analyzed by Fourier transform infrared (FTIR) spectroscopy to identify the presence of functional groups and chemical bonds associated with bioactive compounds. The results showed that Neuburger (NE), Radames (RA), and Regent (RE) cultivars had the highest phenolic concentrations, particularly of catechin, epicatechin, and procyanidin dimers. NE and Feteascǎ Regalǎ (FR) exhibited the greatest radical scavenging and electron transfer activities across multiple antioxidant assays. Rose Blaj (RB) and Astra (AS) displayed the most favorable fatty acid profiles, with high unsaturated-to-saturated fatty acid (UFA/SFA) and hypocholesterolemic-to-hypercholesterolemic fatty acid (H/H) ratios, as well as low atherogenicity (AI) and thrombogenicity (TI) indices, suggesting cardioprotective potential. Additionally, RB and NE cultivars also demonstrated a strong chelation of Cu2+ and Fe2+ ions, enhancing their antioxidant efficacy by mitigating metal-catalyzed oxidative stress. These findings underscore the potential of GP, particularly from NE, RB, RA, and AS cultivars, the last three of which were homologated in Transylvania at SCDVV Blaj, as valuable sources of health-promoting compounds for use in food, nutraceuticals, and other health-related applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

21 pages, 1652 KB  
Article
Comparative Molecular Profiling and Bioactivity Analysis of Algerian Propolis: Antioxidant, Antibacterial Activities, and In Silico NRF2-KEAP1 Pathway Modulation
by Amel Reguig, Ahmed Messai, Ibtissam Kahina Bedaida, Diana C. G. A. Pinto, Chawki Bensouici, Abdelmoneim Tarek Ouamane, Artur M. S. Silva and Jean-Philippe Roy
Curr. Issues Mol. Biol. 2025, 47(9), 761; https://doi.org/10.3390/cimb47090761 - 15 Sep 2025
Cited by 1 | Viewed by 884
Abstract
Propolis, a natural bee-derived product rich in diverse phytochemicals with potential therapeutic benefits, remains underexplored in Algeria. This study investigated the molecular profile, antioxidant capacity, and antibacterial activity of propolis sourced from two bioclimatically distinct Algerian regions (humid subtropical Batna and hot desert [...] Read more.
Propolis, a natural bee-derived product rich in diverse phytochemicals with potential therapeutic benefits, remains underexplored in Algeria. This study investigated the molecular profile, antioxidant capacity, and antibacterial activity of propolis sourced from two bioclimatically distinct Algerian regions (humid subtropical Batna and hot desert Biskra) using electrospray ionization mass spectrometry, ultra-high-performance liquid chromatography with diode array detection, and gas chromatography–mass spectrometry. Significant regional variations were observed, with propolis extract 2 (PE2) exhibiting a higher bioactive content, including a constituent not previously reported in propolis. Antioxidant assays (2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ferric reducing antioxidant power, and phenanthroline) demonstrated that PE2 consistently outperformed propolis extract 1 and the reference standards (DPPH IC50: 27.74 µg/mL; FRAP: 5.16 µg/mL). Antibacterial testing demonstrated potent bactericidal effects, particularly for PE2, with minimum inhibitory concentration values equivalent to the minimum bactericidal concentrations required against Staphylococcus aureus ATCC 25923 (18.75 µg/mL) and Escherichia coli ATCC 25922 (133 µg/mL). Molecular docking identified nine bioactive compounds with high KEAP1 binding affinity, with 1,3-O-caffeoyl-dihydrocaffeoylglycerol (first time reported in propolis) showing the strongest binding affinity (−11.02 Kcal/mol). In silico pharmacokinetic predictions further verified its drug-like properties. These findings suggest the tested Algerian propolis samples, as a source of natural alternative antioxidants and antimicrobials, provide a basis for future research in drug discovery and development. Full article
Show Figures

Figure 1

18 pages, 8662 KB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Viewed by 785
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

20 pages, 2407 KB  
Article
Tailored Lignin Fractions via Ionic Liquid Pretreatment for Sustainable Polymer Systems
by Sharib Khan, Daniel Rauber, Udayakumar Veerabagu, Ruijie Wu, Christopher W. M. Kay, Chunlin Xu, Sabarathinam Shanmugam and Timo Kikas
Molecules 2025, 30(12), 2630; https://doi.org/10.3390/molecules30122630 - 17 Jun 2025
Viewed by 774
Abstract
The valorization of advanced biorefinery lignins remains a significant challenge, owing to the presence of residual carbohydrates. These lignin-associated carbohydrates hinder lignin purification, reduce its homogeneity, and complicate chemical modifications, ultimately limiting the efficient conversion of lignin into high-value products such as chemicals [...] Read more.
The valorization of advanced biorefinery lignins remains a significant challenge, owing to the presence of residual carbohydrates. These lignin-associated carbohydrates hinder lignin purification, reduce its homogeneity, and complicate chemical modifications, ultimately limiting the efficient conversion of lignin into high-value products such as chemicals and materials. This study presents a protic ionic liquid-based lignin fractionation process developed using softwood biomass. Triethylammonium methane sulfonate ([N222H][OMS]) was used to fractionate Pinus sylvestris, yielding two distinct fractions: a low-molecular-weight lignin fraction (LF) and a high-molecular-weight lignin fraction (HF). The extracted fractions were comprehensively characterized using nuclear magnetic resonance (NMR) to quantify changes in interunit linkages (β-O-4, β-5, and β-β) and hydroxyl group distribution, whereas methanolysis gas chromatography/mass spectrometry (GC/MS) was used to quantify residual carbohydrates. The fractionation process achieved LF and HF yields of approximately 70.32% and 17.58%, respectively. Further analysis revealed that the HF contained 59.92 ± 2.12 mg/g carbohydrates, whereas the LF contained only 27.37 ± 1.13 mg/g. These findings underscore the effectiveness of the protic ionic liquid fractionation process in reducing carbohydrate impurities and enhancing lignin purity, paving the way for the more efficient utilization of lignin in value-added applications. Full article
Show Figures

Figure 1

19 pages, 3449 KB  
Article
Optimization of Gas-Liquid Sulfonation in Cross-Shaped Microchannels for α-Olefin Sulfonate Synthesis
by Yao Li, Yingxin Mu, Muxuan Qin, Wei Zhang and Wenjin Zhou
Micromachines 2025, 16(6), 638; https://doi.org/10.3390/mi16060638 - 28 May 2025
Viewed by 1357
Abstract
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin [...] Read more.
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin (AO) with gaseous sulfur trioxide (SO3). The influence of key process parameters, including gas-phase flow rate, reaction temperature, SO3/AO molar ratio, and SO3 volume fraction, on product characteristics and their interactions was systematically investigated using the single-factor experiment and response surface methodology (RSM). A high-precision empirical model (coefficient of determination, R2 = 0.9882) to predict product content was successfully constructed. To achieve multi-objective optimization considering product active substance content and energy efficiency, a strategy combining a two-population genetic algorithm with the entropy-weighted TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method was implemented. Optimal conditions were determined as follows: gas-phase flow rate of 228 mL/min, reaction temperature of 52 °C, SO3/AO molar ratio of 1.27, and SO3 volume fraction of 4%. Compared to conditions optimized solely by RSM, this multi-objective approach achieved a significant 10% reduction in energy efficiency, with only a marginal 3.8% decrease in active substance content. This study demonstrates the feasibility and advantages of microreactors for the efficient and green synthesis of AOS. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Graphical abstract

18 pages, 2779 KB  
Article
Development and Optimization of Bentonite-Based Slurry Sealing Material
by Qingsong Zhang, Changyuan Xiao, Zhaoyang Su, Hui Zhuo and Tuo Qiang
Minerals 2025, 15(4), 385; https://doi.org/10.3390/min15040385 - 5 Apr 2025
Viewed by 617
Abstract
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, [...] Read more.
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, have gradually become a research hotspot. Compared to the traditional solid sealing materials such as cement-based or organic polymers, liquid-phase sealing materials can effectively seal secondary fractures caused by mining vibration through grout replenishment. However, the influence of each component in liquid-phase non-solidified materials on sealing properties such as fluidity, water retention, and permeability remains unclear. To address these issues, a novel liquid-phase non-solidified hole sealing material was developed using bentonite as the base material, sodium dodecyl benzene sulfonate as the dispersant, and sodium carboxymethyl cellulose as the thickener. Initially, single-factor experiments were applied to investigate the effects of material ratios on the fluidity, water retention, and permeability. Subsequently, orthogonal experimental design and response surface methodology were used to establish nonlinear quadratic regression models relating these properties to water–bentonite ratio, dispersant content, and thickener content. The results indicated that an optimal water–bentonite ratio enhances both fluidity and permeability, while dispersants improve water retention and permeability and thickeners primarily boost water retention. Finally, the optimized composition was determined as a water–bentonite ratio of 4.41:1, a dispersant content of 0.38%, and a thickener content of 0.108%. We believe that the developed slurry materials will maintain excellent sealing performance through the entire gas extraction period. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

18 pages, 2422 KB  
Article
Opuntia stricta (Haw.) Fruit Pulp and Seeds as Source of Bioactive Phytochemicals with Promising Functional Properties
by Roberta Pino, Natale Badalamenti, Stefano Dall’Acqua, Rosa Tundis, Maurizio Bruno, Francesco Sottile, Stefania Sut and Monica Rosa Loizzo
Molecules 2025, 30(7), 1580; https://doi.org/10.3390/molecules30071580 - 1 Apr 2025
Viewed by 1311
Abstract
In recent years, Opuntia stricta (Cactaceae family) has garnered considerable attention due to its promising nutritional and medicinal properties. This study aims to investigate the chemical composition and bioactivity of Sicilian Opuntia stricta fruit pulp and seeds. Liquid chromatography–mass spectrometry analysis revealed the presence [...] Read more.
In recent years, Opuntia stricta (Cactaceae family) has garnered considerable attention due to its promising nutritional and medicinal properties. This study aims to investigate the chemical composition and bioactivity of Sicilian Opuntia stricta fruit pulp and seeds. Liquid chromatography–mass spectrometry analysis revealed the presence of betalain derivatives, especially isobetanin and betanin, as the main pigments in the freeze-dried pulp and its hydroalcoholic extract. Other constituents, namely, piscidic acid, isorhamnetin-3-O-glucoside, and isorhamnetin-3-O-rutinoside, were identified. Linoleic acid (41.95%) was the main abundant fatty acid followed by palmitic acid (19.32%) in the seed’s fixed oil as analyzed by gas chromatography–mass spectrometry. The antioxidant activity was assessed using a multi-target approach using 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power assay (FRAP), and β-carotene bleaching tests. The ABTS test showed greater sensitivity to the action of the samples with significant half-maximal inhibitory concentrations (IC50) of 13.24 and 14.82 mg/mL for the hydroalcoholic extract and the freeze-dried fruit pulp, respectively. Opuntia stricta’s extracts were also assessed for the carbohydrate-hydrolyzing enzyme and lipase inhibitory effect. The freeze-dried fruit pulp exhibited the highest effect against lipase (IC50 of 33.54 μg/mL). Collectively, our results contribute to the characterization of this traditionally consumed Sicilian edible plant and suggest its use as a source of bioactive compounds useful for the prevention of obesity linked to hyperglycemia. Full article
(This article belongs to the Special Issue Biological Activity of Plant Extracts)
Show Figures

Graphical abstract

19 pages, 1990 KB  
Article
Comparative Analysis of Phytochemical and Functional Profiles of Arabica Coffee Leaves and Green Beans Across Different Cultivars
by Yoon A Jeon, Premkumar Natraj, Seong Cheol Kim, Joon-Kwan Moon and Young Jae Lee
Foods 2024, 13(23), 3744; https://doi.org/10.3390/foods13233744 - 22 Nov 2024
Cited by 2 | Viewed by 3176
Abstract
This study analyzed the phytochemical composition and functional properties of leaves and green beans from seven Arabica coffee cultivars. The total phenolic and flavonoid contents were measured using spectrophotometric methods, while caffeine, chlorogenic acid (CGA), and mangiferin levels were quantified via High-Performance Liquid [...] Read more.
This study analyzed the phytochemical composition and functional properties of leaves and green beans from seven Arabica coffee cultivars. The total phenolic and flavonoid contents were measured using spectrophotometric methods, while caffeine, chlorogenic acid (CGA), and mangiferin levels were quantified via High-Performance Liquid Chromatography (HPLC). Volatile compounds were identified using Gas Chromatography–Mass Spectrometry (GC-MS). Antioxidant activity was assessed using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, and anti-inflammatory effects were evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO) levels, and nuclear factor kappa B (NF-κB) activation in lipopolysaccharide (LPS)-stimulated macrophages. The results revealed that coffee leaves had significantly higher levels of total phenols, flavonoids, and CGAs, and exhibited stronger antioxidant activities compared to green beans. Notably, Geisha leaves exhibited the highest concentrations of phenolics and flavonoids, along with potent anti-inflammatory properties. Among green beans, the Marsellesa cultivar exhibited a significant flavonoid content and strong ABTS scavenging and anti-inflammatory effects. GC-MS analysis highlighted distinct volatile compound profiles between leaves and green beans, underscoring the phytochemical diversity among cultivars. Multivariate 3D principal component analysis (PCA) demonstrated clear chemical differentiation between coffee leaves and beans across cultivars, driven by key compounds such as caffeine, CGAs, and pentadecanoic acid. Hierarchical clustering further supported these findings, with dendrograms revealing distinct grouping patterns for leaves and beans, indicating cultivar-specific chemical profiles. These results underscore the significant chemical and functional diversity across Arabica cultivars, positioning coffee leaves as a promising functional alternative to green beans due to their rich phytochemical content and bioactive properties. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

13 pages, 3087 KB  
Article
Mixed Adsorption Mono- and Multilayers of ß-Lactoglobulin Fibrils and Sodium Polystyrene Sulfonate
by A. G. Bykov, G. Loglio, R. Miller, E. A. Tsyganov, Z. Wan and B. A. Noskov
Colloids Interfaces 2024, 8(6), 61; https://doi.org/10.3390/colloids8060061 - 11 Nov 2024
Cited by 1 | Viewed by 1823
Abstract
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes [...] Read more.
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes in the surface properties are accelerated in the dispersions of BLG fibrils with and without PSS due to the influence of small peptides coexisting with fibrils. A decrease in the peptide concentration as a result of the dispersion purification leads to slower changes in the surface properties at low PSS concentrations. The increase in the polyelectrolyte concentration results in an increase in the steady-state surface elasticity due to the fibril/PSS complex formation and in very slow changes in the surface properties if the polyelectrolyte exceeds a certain critical value. The latter effect is a consequence of the formation of large aggregates and of an increase in the electrostatic adsorption barrier. The consecutive adsorption of BLG fibrils and PSS leads to the formation of regular multilayers at the liquid–gas interface. The multilayer properties change noticeably with an increase in the number of layers from four to six in agreement with previous results on the multilayers of PSS with an oppositely charged synthetic polyelectrolyte, presumably due to the heterogeneity of the first PSS layer. The dynamic elasticity of the multilayers approaches 250 mN/m, indicating that they can effectively stabilize foams and emulsions. Full article
Show Figures

Figure 1

8 pages, 4310 KB  
Communication
Synthesis and Properties of Novel Acrylic Fluorinated Surfactants
by Chao Lin, Jinhua Li, Yejun Qin, Ping Xing and Biao Jiang
Surfaces 2024, 7(4), 838-845; https://doi.org/10.3390/surfaces7040055 - 14 Oct 2024
Viewed by 1434
Abstract
Branched fluorinated surfactants with creatively introduced acrylate in the hydrophilic group were designed and prepared by adopting perfluoro-2-methyl-2-pentene as the raw substrate. These new compounds showed excellent surface properties, and the surface tension of their aqueous solution at 25 °C could be below [...] Read more.
Branched fluorinated surfactants with creatively introduced acrylate in the hydrophilic group were designed and prepared by adopting perfluoro-2-methyl-2-pentene as the raw substrate. These new compounds showed excellent surface properties, and the surface tension of their aqueous solution at 25 °C could be below 20.00 mN/m at the critical micelle concentration. Compared with similar structures we have synthesized previously, these synthesized compounds exhibit a great improvement with regard to their molecular arrangement at the gas–liquid interface, their polymerizability, and the antibacterial properties of their polymer form, which can provide new ideas in the work to replace perfluorooctane sulfonate/perfluorooctanoic acid. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Surfaces and Interfaces)
Show Figures

Graphical abstract

14 pages, 3871 KB  
Article
Effects and Mechanisms of Dilute-Foam Dispersion System on Enhanced Oil Recovery from Pore-Scale to Core-Scale
by Xiuyu Wang, Rui Shen, Yuanyuan Gao, Shengchun Xiong and Chuanfeng Zhao
Energies 2024, 17(16), 4050; https://doi.org/10.3390/en17164050 - 15 Aug 2024
Viewed by 1441
Abstract
The dilute-foam dispersion system improves oil recovery by reducing interfacial tension between oil and water, altering wettability, and diverting displaced fluids by plugging larger pores. An optimized foaming system is obtained by formability evaluation experiments, in which the half-life for drainage and foaming [...] Read more.
The dilute-foam dispersion system improves oil recovery by reducing interfacial tension between oil and water, altering wettability, and diverting displaced fluids by plugging larger pores. An optimized foaming system is obtained by formability evaluation experiments, in which the half-life for drainage and foaming volume by different types and concentrations of surfactants are analyzed, followed by the addition of partially hydrolyzed polyacrylamide (HPAM) with varied concentrations to enhance the foam stability. Using COMSOL Multiphysics 5.6 software, the Jamin effect and plugging mechanism of the water–gas dispersion system in narrow pore throats were simulated. This dispersion system is applied to assist CO2 huff-n-puff in a low-permeability core, combined with the online NMR method, to investigate its effects on enhanced oil recovery from the pore scale. Core-flooding experiments with double-pipe parallel cores are then performed to check the effect and mechanism of this dilute-foam dispersion system (DFDS) on enhanced oil recovery from the core scale. Results show that foam generated by combining 0.6% alpha-olefin sulfonate (AOS) foaming agent with 0.3% HPAM foam stabilizer exhibits the strongest foamability and the best foam stability. The recovery factor of the DFDS-assisted CO2 huff-n-puff method is improved by 6.13% over CO2 huff-n-puff, with smaller pores increased by 30.48%. After applying DFDS, the minimum pore radius for oil utilization is changed from 0.04 µm to 0.029 µm. The calculation method for the effective working distance of CO2 huff-n-puff for core samples is proposed in this study, and it is increased from 1.7 cm to 2.05 cm for the 5 cm long core by applying DFDS. Double-pipe parallel core-flooding experiments show that this dispersion system can increase the total recovery factor by 17.4%. The DFDS effectively blocks high-permeability layers, adjusts the liquid intake profile, and improves recovery efficiency in heterogeneous reservoirs. Full article
Show Figures

Figure 1

Back to TopTop