Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = gamma-gamma channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1448 KiB  
Article
A Pilot EEG Study on the Acute Neurophysiological Effects of Single-Dose Astragaloside IV in Healthy Young Adults
by Aynur Müdüroğlu Kırmızıbekmez, Mustafa Yasir Özdemir, Alparslan Önder, Ceren Çatı and İhsan Kara
Nutrients 2025, 17(15), 2425; https://doi.org/10.3390/nu17152425 - 24 Jul 2025
Viewed by 367
Abstract
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: [...] Read more.
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: 23.4±2.1) underwent eyes-closed resting-state EEG recordings before and approximately 90 min after oral intake of 150 mg AS-IV. EEG data were collected using a 21-channel 10–20 system and cleaned via Artifact Subspace Reconstruction and Independent Component Analysis. Data quality was confirmed using a signal-to-noise ratio and 1/f spectral slope. Absolute and relative power values, band ratios, and frontal alpha asymmetry were computed. Statistical comparisons were made using paired t-tests or Wilcoxon signed-rank tests. Results: Absolute power decreased in delta, theta, beta, and gamma bands (p < 0.05) but remained stable for alpha. Relative alpha power increased significantly (p = 0.002), with rises in relative beta, theta, and delta and a drop in relative gamma (p = 0.003). Alpha/beta and theta/beta ratios increased, while delta/alpha decreased. Frontal alpha asymmetry was unchanged. Sex differences were examined in all measures that showed significant changes; however, no sex-dependent effects were found. Conclusions: A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Larger placebo-controlled trials, including concurrent psychometric assessments, are needed to verify and contextualize these findings. A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Graphical abstract

17 pages, 3856 KiB  
Article
Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection
by Minghui Zhang, Jingkui Zhang, Jugang Luo, Jiakun Hu, Xiaoping Zhang and Juncai Xu
Appl. Sci. 2025, 15(14), 8037; https://doi.org/10.3390/app15148037 - 18 Jul 2025
Viewed by 301
Abstract
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid [...] Read more.
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid environments. To address these limitations, we propose a compact image enhancement framework called Wavelet Fusion with Sobel-based Weighting (WWSF). This method first corrects global color and luminance distributions using multiscale Retinex and gamma mapping, followed by local contrast enhancement via CLAHE in the L channel of the CIELAB color space. Two preliminarily corrected images are decomposed using discrete wavelet transform (DWT); low-frequency bands are fused based on maximum energy, while high-frequency bands are adaptively weighted by Sobel edge energy to highlight structural features and suppress background noise. The enhanced image is reconstructed via inverse DWT. Experiments on real-world sluice gate datasets demonstrate that WWSF outperforms six state-of-the-art methods, achieving the highest scores on UIQM and AG while remaining competitive on entropy (EN). Moreover, the method retains strong robustness under high turbidity conditions (T ≥ 35 NTU), producing sharper edges, more faithful color representation, and improved texture clarity. These results indicate that WWSF is an effective preprocessing tool for downstream tasks such as segmentation, defect classification, and condition assessment of hydraulic infrastructure in complex underwater environments. Full article
Show Figures

Figure 1

19 pages, 3619 KiB  
Article
An Adaptive Underwater Image Enhancement Framework Combining Structural Detail Enhancement and Unsupervised Deep Fusion
by Semih Kahveci and Erdinç Avaroğlu
Appl. Sci. 2025, 15(14), 7883; https://doi.org/10.3390/app15147883 - 15 Jul 2025
Viewed by 254
Abstract
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To [...] Read more.
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To address these issues, this study proposes a detail-oriented hybrid framework for underwater image enhancement that synergizes the strengths of traditional image processing with the powerful feature extraction capabilities of unsupervised deep learning. Our framework introduces a novel multi-scale detail enhancement unit to accentuate structural information, followed by a Latent Low-Rank Representation (LatLRR)-based simplification step. This unique combination effectively suppresses common artifacts like oversharpening, spurious edges, and noise by decomposing the image into meaningful subspaces. The principal structural features are then optimally combined with a gamma-corrected luminance channel using an unsupervised MU-Fusion network, achieving a balanced optimization of both global contrast and local details. The experimental results on the challenging Test-C60 and OceanDark datasets demonstrate that our method consistently outperforms state-of-the-art fusion-based approaches, achieving average improvements of 7.5% in UIQM, 6% in IL-NIQE, and 3% in AG. Wilcoxon signed-rank tests confirm that these performance gains are statistically significant (p < 0.01). Consequently, the proposed method significantly mitigates prevalent issues such as color aberration, detail loss, and artificial haze, which are frequently encountered in existing techniques. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 32152 KiB  
Article
Efficient Gamma-Based Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
by Huitao Zhao, Shaoping Xu, Liang Peng, Hanyang Hu and Shunliang Jiang
Appl. Sci. 2025, 15(13), 7382; https://doi.org/10.3390/app15137382 - 30 Jun 2025
Viewed by 398
Abstract
In recent years, the continuous advancement of deep learning technology and its integration into the domain of low-light image enhancement have led to a steady improvement in enhancement effects. However, this progress has been accompanied by an increase in model complexity, imposing significant [...] Read more.
In recent years, the continuous advancement of deep learning technology and its integration into the domain of low-light image enhancement have led to a steady improvement in enhancement effects. However, this progress has been accompanied by an increase in model complexity, imposing significant constraints on applications that demand high real-time performance. To address this challenge, inspired by the state-of-the-art Zero-DCE approach, we introduce a novel method that transforms the low-light image enhancement task into a curve estimation task tailored to each individual image, utilizing a lightweight shallow neural network. Specifically, we first design a novel curve formula based on Gamma correction, which we call the Gamma-based light-enhancement (GLE) curve. This curve enables outstanding performance in the enhancement task by directly mapping the input low-light image to the enhanced output at the pixel level, thereby eliminating the need for multiple iterative mappings as required in the Zero-DCE algorithm. As a result, our approach significantly improves inference speed. Additionally, we employ a lightweight network architecture to minimize computational complexity and introduce a novel global channel attention (GCA) module to enhance the nonlinear mapping capability of the neural network. The GCA module assigns distinct weights to each channel, allowing the network to focus more on critical features. Consequently, it enhances the effectiveness of low-light image enhancement while incurring a minimal computational cost. Finally, our method is trained using a set of zero-reference loss functions, akin to the Zero-DCE approach, without relying on paired or unpaired data. This ensures the practicality and applicability of our proposed method. The experimental results of both quantitative and qualitative comparisons demonstrate that, despite its lightweight design, the images enhanced using our method not only exhibit perceptual quality, authenticity, and contrast comparable to those of mainstream state-of-the-art (SOTA) methods but in some cases even surpass them. Furthermore, our model demonstrates very fast inference speed, making it suitable for real-time inference in resource-constrained or mobile environments, with broad application prospects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 4683 KiB  
Article
Transmission of LG Modes in High-Capacity 16 × 10 Gbps FSO System Using FBG Sensors Under Different Channel Scenarios
by Meet Kumari and Satyendra K. Mishra
Micromachines 2025, 16(7), 738; https://doi.org/10.3390/mi16070738 - 24 Jun 2025
Viewed by 564
Abstract
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, [...] Read more.
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, a 16 × 10 Gbps MDM-FSO system using fiber Bragg grating (FBG) sensors for the coexistence of communication and sensing, exploiting FSO links to transmit distinct Laguerre-Gaussian (LG) beams at a 1000–1900 m range, is proposed. The results illustrate that the system can transmit higher-order LG beams with sensor temperatures of 20–120 °C over a 1500 m range under clear air, drizzle, and moderate haze weather. Also, an improved performance is achieved in gamma–gamma compared to the log-normal distribution model for 10−6–10−2.5 index modulation under weak-to-strong turbulence. The proposed system is capable of offering a high optical signal-to-noise ratio (OSNR) and gain of 113.39 and 15.43 dB, respectively, at an aggregate data rate of 160 Gbps under different atmospheric scenarios. Moreover, the proposed system achieves better system performance compared to existing works. Full article
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AId Region
by Suchen Li, Zhuo Tang, Mengmeng Li, Lifang Yang and Zhigang Shang
Animals 2025, 15(13), 1851; https://doi.org/10.3390/ani15131851 - 23 Jun 2025
Viewed by 342
Abstract
Flight behavior in pigeons is governed by intricate neural mechanisms that regulate movement patterns and flight dynamics. Among various kinematic parameters, flight acceleration provides critical information for the brain to modulate movement intensity, speed, and direction. However, the neural representation mechanisms underlying flight [...] Read more.
Flight behavior in pigeons is governed by intricate neural mechanisms that regulate movement patterns and flight dynamics. Among various kinematic parameters, flight acceleration provides critical information for the brain to modulate movement intensity, speed, and direction. However, the neural representation mechanisms underlying flight acceleration remain insufficiently understood. To address this, we conducted outdoor free-flight experiments in homing pigeons, during which GPS data, flight posture, and eight-channel local field potentials (LFPs) were synchronously recorded. Our analysis revealed that gamma-band activity in the dorsal intermediate arcopallium (AId) region was more prominent during behaviorally demanding phases of flight. In parallel, local functional network analysis showed that the clustering coefficient of gamma-band activity in the AId followed a nonlinear, U-shaped relationship with flight acceleration—exhibiting the strongest and most widespread connectivity during deceleration, moderate connectivity during acceleration, and the weakest network coupling during steady flight. This pattern likely reflects the increased neural demands associated with flight phase transitions, where greater cognitive and sensorimotor integration is required. Furthermore, using LFP signals from five distinct frequency bands as input, machine learning models were developed to decode flight acceleration, further confirming the role of gamma-band dynamics in motor regulation during natural flight. This study provides the first evidence that gamma-band activity in the avian AId region encodes flight acceleration, offering new insights into the neural representation of motor states in natural flight and implications for bio-inspired flight control systems. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

17 pages, 889 KiB  
Review
An Audiovisual Introduction to Streamer Physics
by Christoph Köhn
Atmosphere 2025, 16(7), 757; https://doi.org/10.3390/atmos16070757 - 20 Jun 2025
Viewed by 245
Abstract
Streamers are small, thin plasma channels that form the precursors of hot lightning leaders and that are associated with phenomena such as transient luminous events or terrestrial gamma-ray flashes. We provide an easily accessible audiovisual introduction for students and early researchers, serving as [...] Read more.
Streamers are small, thin plasma channels that form the precursors of hot lightning leaders and that are associated with phenomena such as transient luminous events or terrestrial gamma-ray flashes. We provide an easily accessible audiovisual introduction for students and early researchers, serving as a supplement to traditional review papers. This overview contains an introduction to the collision-dominated motion of electrons in an ambient field and an ambient gas, including a discussion of cross-sections and friction force. Based on this, we will discuss electron avalanches before moving to streamers. Here, we will focus on the avalanche-to-streamer transition and present properties and different modeling approaches. Finally, we will discuss streamers in different gas mixtures as well as their relation to lightning and plasma chemistry. The viewer of the supplementary video will receive a first overview of streamer physics. Full article
Show Figures

Figure 1

15 pages, 5363 KiB  
Article
Compact and Handheld SiPM-Based Gamma Camera for Radio-Guided Surgery and Medical Imaging
by Fabio Acerbi, Aramis Raiola, Cyril Alispach, Hossein Arabi, Habib Zaidi, Alberto Gola and Domenico Della Volpe
Instruments 2025, 9(2), 14; https://doi.org/10.3390/instruments9020014 - 15 Jun 2025
Viewed by 596
Abstract
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, [...] Read more.
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, the lesion has to be identified precisely, in terms of position and extension. In such a context, going beyond the current one-point probes, introducing portable but high-resolution cameras, handholdable by the surgeon, would be highly beneficial. We developed and tested a novel compact, low-power, handheld gamma camera for radio-guided surgery. This is based on a particular position-sensitive Silicon Photomultiplier (SiPM) technology—the FBK linearly graded SiPM (LG-SiPM). Within the camera, the photodetector is made up of a 3 × 3 array of 10 × 10 mm2 SiPM chips having a total area of more than 30 × 30 mm2. This is coupled with a pixelated scintillator and a parallel-hole collimator. With the LG-SiPM technology, it is possible to significantly reduce the number of readout channels to just eight, simplifying the complexity and lowering the power consumption of the readout electronics while still preserving a good position resolution. The novel gamma camera is light (weight), and it is made to be a fully stand-alone system, therefore featuring wireless communication, battery power, and wireless recharge capabilities. We designed, simulated (electrically), and tested (functionally) the first prototypes of the novel gamma camera. We characterized the intrinsic position resolution (tested with pulsed light) as being ~200 µm, and the sensitivity and resolution when detecting gamma rays from Tc-99m source measured between 134 and 481 cps/MBq and as good as 1.4–1.9 mm, respectively. Full article
Show Figures

Figure 1

28 pages, 4199 KiB  
Article
Dose Reduction in Scintigraphic Imaging Through Enhanced Convolutional Autoencoder-Based Denoising
by Nikolaos Bouzianis, Ioannis Stathopoulos, Pipitsa Valsamaki, Efthymia Rapti, Ekaterini Trikopani, Vasiliki Apostolidou, Athanasia Kotini, Athanasios Zissimopoulos, Adam Adamopoulos and Efstratios Karavasilis
J. Imaging 2025, 11(6), 197; https://doi.org/10.3390/jimaging11060197 - 14 Jun 2025
Viewed by 567
Abstract
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: [...] Read more.
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: A supervised learning framework was developed using real-world paired low- and full-dose images from 105 patients. Data were acquired using standard clinical gamma cameras at the Nuclear Medicine Department of the University General Hospital of Alexandroupolis. The ECAE architecture integrates multiscale feature extraction, channel attention mechanisms, and efficient residual blocks to reconstruct high-quality images from low-dose inputs. The model was trained and validated using quantitative metrics—Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)—alongside qualitative assessments by nuclear medicine experts. Results: The model achieved significant improvements in both PSNR and SSIM across all tested dose levels, particularly between 30% and 70% of the full dose. Expert evaluation confirmed enhanced visibility of anatomical structures, noise reduction, and preservation of diagnostic detail in denoised images. In blinded evaluations, denoised images were preferred over the original full-dose scans in 66% of all cases, and in 61% of cases within the 30–70% dose range. Conclusion: The proposed ECAE model effectively reconstructs high-quality bone scintigraphy images from substantially reduced-dose acquisitions. This approach supports dose reduction in nuclear medicine imaging while maintaining—or even enhancing—diagnostic confidence, offering practical benefits in patient safety, workflow efficiency, and environmental impact. Full article
Show Figures

Figure 1

19 pages, 2812 KiB  
Article
Component Generation Network-Based Image Enhancement Method for External Inspection of Electrical Equipment
by Xiong Liu, Juan Zhang, Qiushi Cui, Yingyue Zhou, Qian Wang, Zining Zhao and Yong Li
Electronics 2025, 14(12), 2419; https://doi.org/10.3390/electronics14122419 - 13 Jun 2025
Viewed by 329
Abstract
For external inspection of electrical equipment, poor lighting conditions often lead to problems such as uneven illumination, insufficient brightness, and detail loss, which directly affect subsequent analysis. To solve this problem, the Retinex image enhancement method based on the Component Generation Network (CGNet) [...] Read more.
For external inspection of electrical equipment, poor lighting conditions often lead to problems such as uneven illumination, insufficient brightness, and detail loss, which directly affect subsequent analysis. To solve this problem, the Retinex image enhancement method based on the Component Generation Network (CGNet) is proposed in this paper. It employs CGNet to accurately estimate and generate the illumination and reflection components of the target image. The CGNet, based on UNet, integrates Residual Branch Dual-convolution blocks (RBDConv) and the Channel Attention Mechanism (CAM) to improve the feature-learning capability. By setting different numbers of network layers, the optimal estimation of the illumination and reflection components is achieved. To obtain the ideal enhancement results, gamma correction is applied to adjust the estimated illumination component, while the HSV transformation model preserves color information. Finally, the effectiveness of the proposed method is verified on a dataset of poorly illuminated images from external inspection of electrical equipment. The results show that this method not only requires no external datasets for training but also improves the detail clarity and color richness of the target image, effectively addressing poor lighting of images in external inspection of electrical equipment. Full article
Show Figures

Figure 1

17 pages, 2086 KiB  
Article
Seismogenic Effects in Variation of the ULF/VLF Emission in a Complex Study of the Lithosphere–Ionosphere Coupling Before an M6.1 Earthquake in the Region of Northern Tien Shan
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2025, 15(6), 203; https://doi.org/10.3390/geosciences15060203 - 1 Jun 2025
Viewed by 399
Abstract
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex [...] Read more.
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex of geophysical monitoring. Preparation of the earthquake we detected in real time, 8 days prior to the main shock, when a characteristic cove-like decrease appeared in the gamma-ray flux measured 100 m below the surface of the ground, which observation indicated an approaching earthquake with high probability. Besides the gamma-ray flux, anomalies connected with the earthquake preparation were studied in the variation of the Earth’s natural pulsed electromagnetic field (ENPEMF) at very low frequencies (VLF) f=7.5 kHz and f=10.0 kHz and at ultra-low frequency (ULF) in the range of 0.001–20 Hz, as well as in the shift of Doppler frequency (DFS) of the ionospheric signal. A drop detected in DFS agrees well with the decrease in gamma radiation background. A sequence of disturbance appearance was revealed, first in the variations of ENPEMF in the VLF band and of the subsurface gamma-ray flux, both of which reflect the activation dynamic of tectonic processes in the lithosphere, and next in the variation of DFS. Two types of earthquake-connected effects may be responsible for the transmission of the perturbation from the lithosphere into the ionosphere: the ionizing gamma-ray flux and the ULF/VLF emission, as direct radiation from the nearby earthquake source. In the article, we emphasize the role of medium ionization in the propagation of seismogenic effects as a channel for realizing the lithosphere–ionosphere coupling. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

17 pages, 2956 KiB  
Article
Design and Evaluation of a Portable Pinhole SPECT System for 177Lu Imaging: Monte Carlo Simulations and Experimental Study
by Georgios Savvidis, Vasileios Eleftheriadis, Valentina Paneta, Eleftherios Fysikopoulos, Maria Georgiou, Efthimis Lamprou, Sofia Lagoumtzi, George Loudos, Paraskevi Katsakiori, George C. Kagadis and Panagiotis Papadimitroulas
Diagnostics 2025, 15(11), 1387; https://doi.org/10.3390/diagnostics15111387 - 30 May 2025
Viewed by 566
Abstract
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was [...] Read more.
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was to evaluate the technical parameters for developing a prototype portable gamma camera dedicated to 177Lu imaging applications. Methods: The well-validated GATE Monte Carlo toolkit was used to study the characteristics of the system and evaluate its performance in terms of spatial resolution, sensitivity, and image quality. For this purpose, a series of Monte Carlo simulations were executed, modeling a channel-edge aperture pinhole collimator incorporating a variety of computational phantoms. The final configuration of the prototype was standardized, incorporating the crystal size, collimator design, shielding, and the optimal FOV. After the development of the actual prototype camera, the system was also validated experimentally on the same setups as the simulations. Results: The final configuration of the prototype imaging system was standardized based on simulation results and then experimentally validated using physical phantoms under equivalent conditions. A minification of 1:5, spatial resolution of 1.0 cm, and sensitivity of 5.2 Cps/MBq at 10 cm distance source-to-collimator distance were assessed and confirmed. The experimental results agreed within 5% of simulated values. Conclusions: This study establishes the technical feasibility and foundational performance of a portable pinhole imaging system for potential clinical use in 177Lu imaging workflows and thereby improving therapeutic effectiveness. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

23 pages, 4015 KiB  
Article
Performance Analysis of FSO-UWOC Mixed Dual-Hop Relay System with Decode-and-Forward Protocol
by Yu Zhou, Yueheng Li, Meiyan Ju and Yong Lv
Electronics 2025, 14(11), 2227; https://doi.org/10.3390/electronics14112227 - 30 May 2025
Viewed by 358
Abstract
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with [...] Read more.
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with air path loss and pointing errors. Meanwhile, the UWOC link is modeled with generalized Gamma distribution (GGD) oceanic turbulence fading, along with underwater path loss and pointing errors. Based on the proposed hybrid channel fading model, closed-form expressions for the average outage probability (OP) and average bit error rate (BER) of the mixed dual-hop system are derived using the higher transcendental Meijer-G function. Similarly, the closed-form expression for the average ergodic capacity of the mixed relay system is obtained via the bivariate Fox-H function. Additionally, asymptotic performance analyses for the average outage probability and BER under high signal-to-noise ratio (SNR) conditions are provided. Finally, Monte Carlo simulations are conducted to validate the accuracy of the derived theoretical expressions and to illustrate the effects of key system parameters on the performance of the mixed relay FSO-UWOC system. Full article
Show Figures

Graphical abstract

15 pages, 126037 KiB  
Article
An Improved Dark Channel Prior Method for Video Defogging and Its FPGA Implementation
by Lin Wang, Zhongqiang Luo and Li Gao
Symmetry 2025, 17(6), 839; https://doi.org/10.3390/sym17060839 - 27 May 2025
Viewed by 502
Abstract
In fog, rain, snow, haze, and other complex environments, environmental objects photographed by imaging equipment are prone to image blurring, contrast degradation, and other problems. The decline in image quality fails to satisfy the requirements of application scenarios such as video surveillance, satellite [...] Read more.
In fog, rain, snow, haze, and other complex environments, environmental objects photographed by imaging equipment are prone to image blurring, contrast degradation, and other problems. The decline in image quality fails to satisfy the requirements of application scenarios such as video surveillance, satellite reconnaissance, and target tracking. Aiming at the shortcomings of the traditional dark channel prior algorithm in video defogging, this paper proposes a method to improve the guided filtering algorithm to refine the transmittance image and reduce the halo effect in the traditional algorithm. Meanwhile, a gamma correction method is proposed to recover the defogged image and enhance the image details in a low-light environment. The parallel symmetric pipeline design of the FPGA is used to improve the system’s overall stability. The improved dark channel prior algorithm is realized through the hardware–software co-design of ARM and the FPGA. Experiments show that this algorithm improves the Underwater Image Quality Measure (UIQM), Average Gradient (AG), and Information Entropy (IE) of the image, while the system is capable of stably processing video images with a resolution of 1280 × 720 @ 60 fps. By numerically analyzing the power consumption and resource usage at the board level, the power consumption on the FPGA is only 2.242 W, which puts the hardware circuit design in the category of low power consumption. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 1134 KiB  
Article
Study on Outage Probability of RF-UWOC Hybrid Dual-Hop Relaying Systems with Decode-and-Forward Protocol
by Meng Guo, Yueheng Li, Yong Lv and Meiyan Ju
Electronics 2025, 14(11), 2110; https://doi.org/10.3390/electronics14112110 - 22 May 2025
Viewed by 290
Abstract
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while [...] Read more.
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while the UWOC link endures generalized Gamma distribution turbulent fading, accounting for underwater path loss and pointing errors. Based on these assumptions, when intensity modulation with direct detection (IM/DD) and heterodyne detection (HD) are, respectively, utilized at the receiver, the average outage probability and its corresponding asymptotic expression for the considered hybrid dual-hop systems under high signal-to-noise ratios are derived. Subsequently, Monte Carlo simulations are conducted to validate the accuracy of the theoretical analysis results and to explore the influence of various key system parameters on the dual-hop systems. Full article
Show Figures

Figure 1

Back to TopTop