Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = fungicide coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 244
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(12), 1671; https://doi.org/10.3390/polym17121671 - 16 Jun 2025
Viewed by 465
Abstract
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their [...] Read more.
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Graphical abstract

24 pages, 12291 KiB  
Article
Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases
by Xufei Zhu, Wanqing Ning, Wei Xiao, Zhaoren Wang, Shengli Li, Jinlong Zhang, Min Ren, Chengnan Xu, Bo Liu, Yanfeng Wang, Juanli Cheng and Jinshui Lin
Microorganisms 2025, 13(6), 1289; https://doi.org/10.3390/microorganisms13061289 - 31 May 2025
Viewed by 616
Abstract
Plant fungal diseases remain a major threat to global agricultural production, necessitating eco-friendly and sustainable strategies. Conventional chemical fungicides often lead to the development of resistant pathogen strains and cause environmental contamination. Therefore, the development of biocontrol agents is particularly important. In this [...] Read more.
Plant fungal diseases remain a major threat to global agricultural production, necessitating eco-friendly and sustainable strategies. Conventional chemical fungicides often lead to the development of resistant pathogen strains and cause environmental contamination. Therefore, the development of biocontrol agents is particularly important. In this study, we identified Burkholderia stagnalis YJ-2 from the rhizosphere soil of Woodsia ilvensis as a promising biocontrol strain using 16S rRNA and whole-genome sequencing. This strain demonstrated broad-spectrum antifungal activity against plant fungal pathogens, with its bioactive extracts maintaining high stability across a temperature range of 25–100 °C and pH range of 2–12. We used in vitro assays to further show that the metabolites of B. stagnalis YJ-2 disrupted the hyphal morphology of Valsa mali, resulting in swelling, reduced branching, and increased pigmentation. Fluorescence labeling confirmed that B. stagnalis YJ-2 stably colonized the roots and stems of tomato and wheat plants. Furthermore, various formulations of microbial agents based on B. stagnalis YJ-2 were evaluated for their efficacy against plant pathogens. The seed-coating formulation notably protected tomato seedlings from Alternaria solani infection without affecting germination (p > 0.1), while the wettable powder exhibited significant control effects on early blight in tomatoes, with the preventive treatment showing better efficacy than the therapeutic treatment. Additionally, the B. stagnalis YJ-2 bone glue agent showed a substantial inhibitory effect on apple tree canker. Whole-genome analysis of B. stagnalis YJ-2 revealed a 7,705,355 bp genome (67.68% GC content) with 6858 coding genes and 20 secondary metabolite clusters, including three clusters (YJ-2_GM002015-YJ-2_GM002048, YJ-2_GM0020090-YJ-2_GM002133, and YJ-2_GM06534-YJ-2_GM006569) that are related to the antifungal activity of YJ-2 and are homologous to the biosynthetic gene clusters of known secondary metabolites, such as icosalide, ornibactin, and sinapigladioside. We further knocked out core biosynthetic genes of two secondary metabolic gene clusters and found that only the YJ-2_GM006534-YJ-2_GM006569 gene cluster had a corresponding function in two potential antifungal gene clusters. In contrast to the wild-type strain YJ-2, only deletion of the YJ-2_GM006563 gene reduced the antifungal activity of B. stagnalis YJ-2 by 8.79%. These findings highlight the biocontrol potential of B. stagnalis YJ-2, supporting a theoretical foundation for its development as a biocontrol agent against plant fungal diseases and thereby promoting sustainable agricultural disease management. Full article
(This article belongs to the Special Issue Rhizosphere Bacteria and Fungi That Promote Plant Growth)
Show Figures

Figure 1

28 pages, 12614 KiB  
Article
Nanoparticles as New Antifungals in the Prevention of Bovine Mycotic Mastitis Caused by Candida spp. and Diutina spp.—In Vitro Studies
by Magdalena Kot, Agata Lange, Weronika Jabłońska, Aleksandra Kalińska, Barbara Nasiłowska, Wojciech Skrzeczanowski and Marcin Gołębiewski
Molecules 2025, 30(10), 2086; https://doi.org/10.3390/molecules30102086 - 8 May 2025
Viewed by 628
Abstract
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects [...] Read more.
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects on fungi, which often exhibit resistance to antifungal agents. This study evaluated the antifungal properties of nanoparticles (NPs) against Candida albicans, Candida glabrata, Candida parapsilosis, Diutina rugosa var. rugosa, Diutina catenulata, and Diutina rugosa. Tested NPs included gold (AuNPs), silver (AgNPs), copper (CuNPs), iron with hydrophilic carbon coating (FeCNPs) (1.56–25 mg/L), and platinum (PtNPs) (0.625–10 mg/L), along with their complexes. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) at 0.75–25 mg/L for AuNPs, AgNPs, CuNPs, and FeCNPs and 0.313–10 mg/L for PtNPs, as well as fungal sensitivity to standard antifungals, were determined. Each strain showed different sensitivities depending on the NPs used and their concentrations. C. glabrata was the most resistant to nanoparticles, while D. catenulata was the most susceptible. PtNPs and FeCNPs showed no or weak biocidal properties. Some mycotic-resistant strains were sensitive to nanoparticles. This study indicates a high in vitro antifungal potential for the application of nanoparticles, especially AgCuNPs, as a new effective non-antibiotic agent for the prevention and control of mycotic mastitis in dairy cattle. Full article
Show Figures

Figure 1

11 pages, 852 KiB  
Article
Fungicide Seed Coating Increases Emergence of Bluebunch Wheatgrass (Pseudoroegneria spicata) Under High-Fungal-Biomass Conditions
by Amber J. Johnson, Brad Geary, April Hulet and Matthew D. Madsen
Plants 2025, 14(5), 679; https://doi.org/10.3390/plants14050679 - 22 Feb 2025
Cited by 1 | Viewed by 542
Abstract
Pathogenesis from soil- and seed-borne fungi can limit the survival and growth of native seeds and seedlings. Fungicides can combat fungal pathogens, but in some studies, fungicide treatments were ineffective at improving seedling emergence over untreated seed. Such studies suggest that low fungal [...] Read more.
Pathogenesis from soil- and seed-borne fungi can limit the survival and growth of native seeds and seedlings. Fungicides can combat fungal pathogens, but in some studies, fungicide treatments were ineffective at improving seedling emergence over untreated seed. Such studies suggest that low fungal presence due to dry conditions may be the cause of fungicide ineffectiveness in some years and sites. This study tested whether a fungicide treatment’s effectiveness is indeed related to the amount of fungi in the soil. We compared the emergence and biomass produced from Pseudoroegneria spicata seed that was uncoated, coated with no active ingredient, and fungicide-coated, across five soil treatments promoting different levels of fungal biomass. For uncoated seed, both percent emergence and total biomass of seedlings were highest in autoclaved soil and declined when fungi were present, but the level of fungus did not impact emergence or biomass for fungicide-coated seed. When grown in autoclaved, untreated, or low-fungus soils, percent emergence and total biomass from fungicide-coated seeds were not significantly different from uncoated seeds. However, in medium- and high-fungus soils, the percent emergence and total biomass from fungicide-coated seeds were more than two times greater than uncoated seed (p < 0.05). These results indicate that fungicide treatments can be effective at increasing restoration success for P. spicata, but the effectiveness of the fungicide treatment depends on the microbial environment of the planting site. Full article
Show Figures

Figure 1

12 pages, 763 KiB  
Article
A Different Way to Sow: Seed Enhancements Involving Gelatin Encapsulation with Controlled-Released Fertilizers Improve Seedling Growth in Tomato (Solanum lycopersicum L.)
by Brant W. Touchette, Daniel S. Cox, Rebecca L. Carranza and Harriette Palms
Agrochemicals 2025, 4(1), 2; https://doi.org/10.3390/agrochemicals4010002 - 20 Feb 2025
Viewed by 902
Abstract
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability [...] Read more.
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability of small or irregularly shaped seeds. Seed encapsulation using pharmaceutical capsules can be viewed as an extension of seed coatings where seeds and other beneficial agrichemicals can be combined into a single plantable unit. For many crops, direct contact with high levels of conventional fertilizers may induce some level of phytotoxicity, and early studies involving fertilizer-enriched seed coatings resulted in decreased seedling emergence and diminished plant performance. Encapsulation, however, provides greater delivery volumes compared to other coatings and may offer some degree of separation between seeds and potentially phytotoxic agrochemicals. This study considered tomato seed encapsulation with controlled-release fertilizers. In general, seed exposure to gelatin-based capsules delayed germination by 2- to 3- days. Nevertheless, seed encapsulation improved plant performance including increased plant height and dry mass production by as much as 75 and 460%, respectively. These growth responses mitigated any effects attributed to germination delays. Moreover, higher levels of controlled-release fertilizers (≥800 mg) fostered earlier flower induction by up to 3 weeks. Collectively, the results suggest that seed encapsulation can be an effective way to deliver fertilizers to plants in a manner that could reduce overall fertilizer application rates and possibly lessen the quantity of plant nutrient input necessary for tomato cultivation. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

18 pages, 6293 KiB  
Article
Nanostructured Chitosan Coating with a Coffee Residue Extract for the Preservation of Tomato and Controlling Pre- and Postharvest Disease Caused by Rhizopus stolonifer
by Mendoza Juárez Andrea, Pérez García Mariana, Hernández López Mónica, Correa Pacheco Zormy Nacary, Bautista Baños Silvia and Barrera Necha Laura
Processes 2025, 13(1), 220; https://doi.org/10.3390/pr13010220 - 14 Jan 2025
Cited by 2 | Viewed by 1265
Abstract
The antifungal efficacy of coffee residue extract (CRE) and chitosan nanoparticles (CNPs) alone and in combination (CNPs-CRE) against the growth of Rhizopus stolonifer was assessed. Two nanostructured edible coatings (ECs), one consisting of chitosan nanoparticles (CCNP) and another consisting of coffee residue extract [...] Read more.
The antifungal efficacy of coffee residue extract (CRE) and chitosan nanoparticles (CNPs) alone and in combination (CNPs-CRE) against the growth of Rhizopus stolonifer was assessed. Two nanostructured edible coatings (ECs), one consisting of chitosan nanoparticles (CCNP) and another consisting of coffee residue extract encapsulated in chitosan nanoparticles (CCNP-CRE), were elaborated, characterized, and applied on inoculated Naples tomatoes to evaluate their fungicidal activity and their effect on fruit quality. The tests consisted of evaluating physicochemical variables in tomato previously sprayed with CCNP and CCNP-CRE for 30 days preharvest and 14 days at 10 °C postharvest. CNPs with a particle size of 2.4 ± 0.24 nm with a Z potential of −1.62 mV were observed, while CNPs-CRE showed a size of 3.9 ± 0.55 nm with a Z potential of −0.89 mV. The FTIR spectrum showed the integration of CRE into the CCNP-CRE. A synergistic effect between CNPs and 1% CRE was observed, obtaining the greatest inhibition of mycelial growth (43%). In the preharvest trials, both ECs showed differences with respect to the control in the variables of color, total carotenoids and ethylene. In the postharvest test, they showed differences in color and CO2 production. The severity of the infection decreased by 33% in tomatoes with coatings. The ECs evaluated represent a emergent technological advancement in the conservation of the tomato. Full article
(This article belongs to the Special Issue Monitoring, Detection and Control of Food Contaminants)
Show Figures

Figure 1

15 pages, 2565 KiB  
Article
Effect of Treatment of Beech Seeds with Copper Nanoparticles on Seed Coat Mycoflora
by Marcin Beza, Jolanta Behnke-Borowczyk, Marcin Studnicki and Marta Aleksandrowicz-Trzcińska
Forests 2024, 15(12), 2178; https://doi.org/10.3390/f15122178 - 11 Dec 2024
Viewed by 935
Abstract
Seeds harbor a complex fungal community, of which some members may be pathogenic. For this reason, seeds are often treated with fungicides before sowing. Plant protection is constantly looking for environmentally friendly technological solutions and nanotechnology can provide a solution that is a [...] Read more.
Seeds harbor a complex fungal community, of which some members may be pathogenic. For this reason, seeds are often treated with fungicides before sowing. Plant protection is constantly looking for environmentally friendly technological solutions and nanotechnology can provide a solution that is a green and environmentally friendly alternative to fungicide treatment. The aim of this study was to conduct a quantitative and qualitative analysis of the composition of fungal communities inhabiting the seed coats of healthy and damaged European beech seeds and to assess the effect of copper nanoparticles (CuNPs) on the composition of these communities. The seeds were soaked in a solution of CuNPs at a concentration of 50 ppm for 30 min. There were four groups of seeds: control—not treated with CuNPs, seeds examined 1 day after CuNP (CuNP_1day) treatment, seeds examined 3 weeks after CuNP (CuNP_3weeks) treatment, and damaged seeds—not treated. A community analysis was conducted based on the ITS1 region using Illumina sequencing. In total, we found 70 taxa of fungi and Oomycota. The community on the control seeds numbered 38 taxa, on damaged seeds—67, on seeds treated with CuNPs after 1 day—40, and after 3 weeks—15, respectively. In terms of biological diversity and species composition, the community on damaged seeds differed significantly from that on CuNP_3weeks seeds and both of these treatments differed from the remaining two. On the damaged seeds, the dominant species were as follows: Botritis cinerea Pers., Globisporangium intermedium (de Bary) Uzuhashi, Tojo & Kakish., and Pythium dissotocum Drechsler. The communities of the other seed groups were dominated by Fusicoccum quercus Oudem. and Apiognomonia errabunda (Roberge ex Desm.) Höhn., which proved resistant to CuNPs. Taxa belonging to the Oomycota, fungi of the genera Fusarium, Mucor, and Penicillium, were sensitive to CuNPs and did not occur on CuNP_3weeks seeds. The significant reduction in the number of taxa and the most favorable structure of trophic groups being found on the CuNP_3weeks seeds suggest that NPs could potentially replace traditional fungicides for seed treatment. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 5876 KiB  
Article
Effect of Combining Fungal and Flame-Retardant Coatings on the Thermal Degradation of Spruce and Beech Wood Under Flame Loading
by Bohuš Leitner, Stanislava Gašpercová, Iveta Marková and Ivana Tureková
Fire 2024, 7(12), 463; https://doi.org/10.3390/fire7120463 - 6 Dec 2024
Cited by 1 | Viewed by 1162
Abstract
Compliance with fire safety standards for wood is crucial for its application in the internal applications of buildings. This article focuses on monitoring the quality of protective coatings for wood under thermal loading conditions. The examined samples of spruce (Picea abies L. [...] Read more.
Compliance with fire safety standards for wood is crucial for its application in the internal applications of buildings. This article focuses on monitoring the quality of protective coatings for wood under thermal loading conditions. The examined samples of spruce (Picea abies L. Karst.) and beech wood (Fagus sylvatica L.) were treated with selected fungicidal coatings based on dimethylbenzyl ammonium chloride. Following this, they were soaked in a ferric phosphate-based flame-retardant solution. Additionally, a portion of the samples was treated solely with the flame retardant. The effectiveness of the protective coatings was assessed through experimental thermal loading of the prepared samples. The testing method adhered to according to selected standards, which evaluate the ignitability of building materials when subjected to a small flame source. The experimental results, including the mass loss, mass loss rate, and time–temperature curves of the thermally loaded samples, demonstrated a significant influence of the selected coatings on thermal degradation. Notably, the fungicidal coating exhibited protective properties. Samples treated only with the flame retardant showed higher mass losses compared to those treated first with the fungicidal coating followed by the retardant. Additionally, differences were observed between the wood types, with beech samples exhibiting greater mass losses and higher mass loss rates than spruce. Full article
Show Figures

Figure 1

14 pages, 7423 KiB  
Article
Silk Fibroin Seed Coatings: Towards Sustainable Seed Protection and Enhanced Growth
by Feng Jin, Zhengrong Guan, Jiahao Zhang, Zhigang Qu, Shengjie Ling, Leitao Cao, Jing Ren and Ruoxuan Peng
Polymers 2024, 16(23), 3281; https://doi.org/10.3390/polym16233281 - 25 Nov 2024
Cited by 2 | Viewed by 1466
Abstract
Seed coating technology is vital in agriculture, enhancing seed protection and growth. However, conventional coatings often include chemical fungicides that pose environmental risks, highlighting the need for sustainable alternatives. This study explores silk fibroin (SF), a natural biopolymer with excellent film-forming properties, as [...] Read more.
Seed coating technology is vital in agriculture, enhancing seed protection and growth. However, conventional coatings often include chemical fungicides that pose environmental risks, highlighting the need for sustainable alternatives. This study explores silk fibroin (SF), a natural biopolymer with excellent film-forming properties, as a potential seed coating agent, addressing its antimicrobial limitations by combining it with the commercial agent CRUISER® and the antimicrobial peptide Nisin. Experimental methods included solution stability analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and growth assessments of wheat seeds. Findings reveal that silk fibroin-CRUISER® (SC) composites form stable β-sheet structures, enhancing the coating’s mechanical strength. SF-based coatings improved seedling emergence rates (up to 1.65-fold), plant height (up to 1.05-fold), and root growth (up to 1.2-fold), especially under cold stress. The addition of Nisin further significantly boosted the antibacterial properties, providing sustained pathogen inhibition (p < 0.01). Identifying the optimal concentration of SF was essential for achieving a balance between protection and breathability, a key factor for industrial application. This research provides valuable insights into the development of eco-friendly seed coatings, presenting a viable and sustainable alternative to traditional chemical-based options in agricultural practices. Full article
(This article belongs to the Collection Biopolymers and Biobased Polymers: Chemistry and Engineering)
Show Figures

Graphical abstract

13 pages, 7152 KiB  
Article
Degradation of Chlorothalonil by Catalytic Biomaterials
by Maya Mowery-Evans, Karla Diviesti and Richard C. Holz
Catalysts 2024, 14(11), 805; https://doi.org/10.3390/catal14110805 - 9 Nov 2024
Viewed by 1180
Abstract
Chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile, TPN, CAS: 1897-45-6) is a halogenated fungicide currently widely applied to a large variety of crops. Its carcinogenicity, embryo lethality, and high chronic oral toxicity in mammals, among other effects on a variety of organisms, has made its biodegradation of great [...] Read more.
Chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile, TPN, CAS: 1897-45-6) is a halogenated fungicide currently widely applied to a large variety of crops. Its carcinogenicity, embryo lethality, and high chronic oral toxicity in mammals, among other effects on a variety of organisms, has made its biodegradation of great interest. Chlorothalonil dehalogenase (Chd) from the bacterium Pseudomonas sp. CTN-3 offers a potential solution by catalyzing the first step in the degradation of chlorothalonil. Reported herein are active biomaterials of Chd when encapsulated in tetramethylorthosilicate (TMOS) gels using the sol–gel method (Chd/sol), alginate beads (Chd/alginate), and chitosan-coated alginate beads (Chd/chitosan). Both Chd/sol and Chd/chitosan increased protection from the endopeptidase trypsin as well as imparted stability over a pH range from 5 to 9. Chd/sol outperformed Chd/alginate and Chd/chitosan in long-term storage and reuse experiments, retaining similar activity to soluble Chd stored under similar conditions. All three materials showed a level of increased thermostability, with Chd/sol retaining >60% activity up to 70 °C. All materials showed activity in 40% methanol, suggesting the possibility for organic solvents to improve TPN solubility. Overall, Chd/sol offers the best potential for bioremediation of TPN using Chd. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

22 pages, 4213 KiB  
Article
Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes
by María Elena Mancera-López and Josefina Barrera-Cortés
Polymers 2024, 16(19), 2691; https://doi.org/10.3390/polym16192691 - 24 Sep 2024
Cited by 1 | Viewed by 1288
Abstract
This study focuses on developing an encapsulated and dehydrated formulation of vegetative actinobacteria cells for an efficient application in sustainable agriculture, both as a fungicidal agent in crop protection and as a growth-stimulating agent in plants. Three strains of actinobacteria were used: one [...] Read more.
This study focuses on developing an encapsulated and dehydrated formulation of vegetative actinobacteria cells for an efficient application in sustainable agriculture, both as a fungicidal agent in crop protection and as a growth-stimulating agent in plants. Three strains of actinobacteria were used: one from a collection (Streptomyces sp.) and two natives to agricultural soil, which were identified as S3 and S6. Vegetative cells propagated in a specific liquid medium for mycelium production were encapsulated in various alginate–chitosan composites produced by extrusion. Optimal conditions for cell encapsulation were determined, and cell damage from air-drying at room temperature was evaluated. The fresh and dehydrated composites were characterized by porosity, functional groups, size and shape, and their ability to protect the immobilized vegetative cells’ viability. Actinomycetes were immobilized in capsules of 2.1–2.7 mm diameter with a sphericity index ranging from 0.058 to 0.112. Encapsulation efficiency ranged from 50% to 88%, and cell viability after drying varied between 44% and 96%, depending on the composite type, strain, and airflow. Among the three immobilized and dried strains, S3 and S6 showed greater resistance to encapsulation and drying with a 4 L·min−1 airflow when immobilized in coated and core-shell composites. Encapsulation in alginate–chitosan matrices effectively protects vegetative actinobacteria cells during dehydration, maintaining their viability and functionality for agricultural applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 3217 KiB  
Article
Preparation and Application of Multi-Walled Carbon Nanotube-Supported Metconazole Suspension Concentrate for Seed Coating to Control Wheat Sharp Eyespot
by Xuexiang Ren, Dongdong Qi, Zhao Li, Yu Chi, Xianyan Su, Kaixin Gu, Zhenghe Ye, Shun He and Li Chen
Agronomy 2024, 14(9), 1985; https://doi.org/10.3390/agronomy14091985 - 1 Sep 2024
Viewed by 1324
Abstract
Wheat sharp eyespot is a prevalent soil-borne disease that causes substantial economic losses in agriculture. Metconazole, a new triazole broad-spectrum fungicide, has demonstrated effective control of soil-borne diseases. Multi-walled carbon nanotubes (MWCNTs) are an innovative adsorbent material known for their large surface area [...] Read more.
Wheat sharp eyespot is a prevalent soil-borne disease that causes substantial economic losses in agriculture. Metconazole, a new triazole broad-spectrum fungicide, has demonstrated effective control of soil-borne diseases. Multi-walled carbon nanotubes (MWCNTs) are an innovative adsorbent material known for their large surface area and high absorptive capacity. This study identifies MWCNTs as the optimal adsorption material for metconazole, achieving an adsorption rate of 85.27% under optimal conditions (stirring time of 30 min and feeding ratio of 6:1). The optimized formula consists of 1.5% dispersant sodium wood, 1% emulsifier BY-112, 2% AEO-15, 3% glycol, 3% filmogen, and 4% red dyes. A 0.5% MWCNT–metconazole suspension concentrate for seed coating (FSC) significantly enhances the inhibitory effect of metconazole on wheat growth and promotes root development. At the tillering stage, a coating ratio of 1:100 shows a marked impact on wheat growth, and MWCNTs can improve the control effect of metconazole to Rhizoctonia cerealis. This work offers a novel approach for applying metconazole in a wheat suspension concentrate for seed coating. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 3131 KiB  
Article
Fungicide-Loaded Liposomes for the Treatment of Fungal Diseases in Agriculture: An Assessment of Botrytis cinerea
by Angelo Agnusdei, Anna Maria Maurelli, Donato Gerin, Donato Monopoli, Stefania Pollastro, Lucia Catucci, Francesco Faretra and Vincenzo De Leo
Int. J. Mol. Sci. 2024, 25(15), 8359; https://doi.org/10.3390/ijms25158359 - 31 Jul 2024
Cited by 3 | Viewed by 3250
Abstract
In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an [...] Read more.
In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes’ biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL−1, the lowest concentration assessed. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 2031 KiB  
Article
Superabsorbent Seed Coating and Its Impact on Fungicide Efficacy in a Combined Treatment of Barley Seeds
by Marcela Gubišová, Martina Hudcovicová, Miroslava Hrdlicová, Katarína Ondreičková, Peter Cilík, Lenka Klčová, Šarlota Kaňuková and Jozef Gubiš
Agriculture 2024, 14(5), 707; https://doi.org/10.3390/agriculture14050707 - 29 Apr 2024
Viewed by 2111
Abstract
The technology of seed coating with superabsorbent polymer (SAP) has the potential to mitigate the negative impact of drought on seed germination and crop establishment. However, their application on the seed surface can affect the effectiveness of pesticides used for seed treatment in [...] Read more.
The technology of seed coating with superabsorbent polymer (SAP) has the potential to mitigate the negative impact of drought on seed germination and crop establishment. However, their application on the seed surface can affect the effectiveness of pesticides used for seed treatment in the protection against phytopathogens. In our work, the influence of the Aquaholder®Seed polymer coating on the effectiveness of fungicides in the protection of germinating seeds of spring barley cv. Bojos and Laudis against the fungal pathogen Bipolaris sorokiniana was studied. One-half of the seeds were first treated with fungicides, and then a polymer was applied. Fungicide efficacy was evaluated in a Petri dish test and pot test under the pathogen attack. Seed coating with SAP did not negatively affect fungicide efficacy. The percentage of germinated seeds, seedling emergence, plant height, and symptoms of the disease in the fungicide-treated variants were not significantly changed by the SAP application. Moreover, in cv. Laudis, the application of SAP alone partially protected germinating seeds against pathogen attack. The amount of pathogen DNA in plant tissues of cv. Laudis was not significantly different among seed treatments, while in cv. Bojos, the pathogen DNA increased in seeds coated with SAP alone but decreased in combined treatment with fungicides. These results demonstrated that SAP seed coating does not negatively affect the efficacy of fungicides used for seed protection against fungal pathogens. Full article
Show Figures

Figure 1

Back to TopTop