Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = fungal consortium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2652 KiB  
Article
Impact of Post-Harvest Apple Scab on Peel Microbiota, Fermentation Dynamics, and the Volatile/Non-Volatile Composition of Cider
by Valeria Gualandri, Roberto Larcher, Elena Franciosi, Mauro Paolini, Tiziana Nardin, Ilaria Pertot and Raffaele Guzzon
Molecules 2025, 30(11), 2322; https://doi.org/10.3390/molecules30112322 - 26 May 2025
Viewed by 481
Abstract
Apple scab is a disease caused by Venturia inaequalis; it alters the vegetative cycle of apple trees and affects the fruits in orchards or during post-harvest storage. Utilizing rotten apples in cidermaking is a promising technique to mitigate crop losses; nonetheless, uncertainties [...] Read more.
Apple scab is a disease caused by Venturia inaequalis; it alters the vegetative cycle of apple trees and affects the fruits in orchards or during post-harvest storage. Utilizing rotten apples in cidermaking is a promising technique to mitigate crop losses; nonetheless, uncertainties persist regarding the beneficial effects of damaged fruits. This study involves a thorough chemical analysis of cider produced from both healthy and scab-infected fruits to identify compositional changes caused by microbial proliferation and to assess their impact on cider quality. Apples infected by post-harvest apple scab, as opposed to uninfected apples, were employed in cidermaking. The peel microbiota was described by plate count, and next-generation sequencing-based metabarcoding methods were used to describe the peel microbiota, while HPLC and GC MS-MS were used to characterize the cider compositions. Apples infected with post-harvest scab host a specific fungal consortium with higher biodiversity, as evidenced by the Shannon evenness index, especially in the fungi kingdom. The presence of apple scab slows fermentation by up to 23%, lowers ethanol accumulation by up to 0.4%, and affects certain cider constituents: sugars, alcohols, amino acids, fatty acids, and esters. The statistical treatment of data relative to the chemical profile (PLS and PCA on the 31 compounds with VIP > 1) distinguishes ciders made from altered or safe fruits. Scab-infected apples can be valorized in the agri-food industry; however, microbiota alterations must not be underestimated. It is necessary to implement adequate mitigation strategies. Full article
Show Figures

Graphical abstract

20 pages, 1663 KiB  
Article
Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor
by Lyudmila Dimitrova, Yana Ilieva, Dilnora Gouliamova, Vesselin Kussovski, Venelin Hubenov, Yordan Georgiev, Tsveta Bratanova, Mila Kaleva, Maya M. Zaharieva and Hristo Najdenski
Genes 2025, 16(5), 551; https://doi.org/10.3390/genes16050551 - 30 Apr 2025
Viewed by 675
Abstract
Background: Nowadays, the microbial degradation of cellulose represents a new perspective for reducing cellulose waste from industry and households and at the same time obtaining energy sources. Methods: We isolated and enriched two aerobic (at 37 °C and 50 °C) and one anaerobic [...] Read more.
Background: Nowadays, the microbial degradation of cellulose represents a new perspective for reducing cellulose waste from industry and households and at the same time obtaining energy sources. Methods: We isolated and enriched two aerobic (at 37 °C and 50 °C) and one anaerobic microbial consortium from an anaerobic bioreactor for biogas production by continuous subculturing on peptone cellulose solution (PCS) medium supplemented with 0.3% treated or untreated Whatman filter paper under static conditions. Samples were taken every 7 days until day 21 to determine the percentage of cellulose biodegradation. We determined the antimicrobial resistance of aerobic and anaerobic consortia and some single colonies by disc diffusion method, against 42 clinically applied antibiotics. PCR analyses were performed to search for the presence of eight genes for cellulolytic activity and nine genes for antibiotic resistance. By metagenomics analysis, the bacterial and fungal genus distributions in the studied populations were determined. Results: Aerobes cultured at 50 °C degraded cellulose to the greatest extent (47%), followed by anaerobes (24–38%) and aerobes (8%) cultured at 37 °C. The bacterial sequence analysis showed that the dominant phyla are Bacillota and Bacteroidetes and genera—Paraclostridium, Defluvitalea, Anaerobacillus, Acetivibrio, Lysinibacillus, Paenibacillus, Romboutsia, Terrisporobacter, Clostridium, Sporanaerobacter, Lentimicrobium, etc. in a different ratio depending on the cultivation conditions and the stage of the process. Some of these representatives are cellulolytic and hemicellulolytic microorganisms. We performed lyophilization and proved that it is suitable for long-term storage of the most active consortium, which degrades even after the 10th re-inoculation for a period of one year. We proved the presence of ssrA, ssrA BS and blaTEM genes. Conclusions: Our findings demonstrated the potential utility of the microbial consortium of anaerobes in the degradation of waste lignocellulose biomass. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

13 pages, 1192 KiB  
Article
Reducing Postharvest Losses in Organic Apples: The Role of Yeast Consortia Against Botrytis cinerea
by Joanna Krzymińska and Jolanta Kowalska
Agriculture 2025, 15(6), 602; https://doi.org/10.3390/agriculture15060602 - 11 Mar 2025
Viewed by 1027
Abstract
Grey mould caused by Botrytis cinerea presents significant challenges to apple production including organic farming. Biocontrol yeasts and their consortia can limit fungal diseases. This study evaluates the efficacy of selected yeast isolates and their consortia in suppressing B. cinerea in stored apples. [...] Read more.
Grey mould caused by Botrytis cinerea presents significant challenges to apple production including organic farming. Biocontrol yeasts and their consortia can limit fungal diseases. This study evaluates the efficacy of selected yeast isolates and their consortia in suppressing B. cinerea in stored apples. The yeast strains tested—Wickerhamomyces anomalus 114/73, Naganishia albidosimilis 117/10, and Sporobolomyces roseus 117/67—were assessed at 4 °C and 23 °C, individually and in consortia. The results demonstrate the superior efficacy of a consortium combining all three isolates, which achieved the highest reduction in spore germination and disease severity. A two-strain consortium of isolates 114/73 and 117/10 also showed substantial biocontrol activity, outperforming single-strain treatments. These combinations effectively suppressed B. cinerea growth and displayed rapid colonization of apple wounds. The study highlights the potential of yeast isolates and their consortia to manage postharvest fungal decay, addressing a critical need for sustainable, eco-friendly solutions in organic apple production. Full article
(This article belongs to the Special Issue Exploring Sustainable Strategies That Control Fungal Plant Diseases)
Show Figures

Figure 1

25 pages, 5915 KiB  
Article
Construction and Effect Analysis of a Mixed Actinomycete Flora for Straw Returning to Albic Soil in Northeast China
by Xiujie Gong, Yang Yu, Guoyi Lv, Yubo Hao, Lingli Wang, Juntao Ma, Yubo Jiang, Jiahe Zou, Jingyang Li and Qiuju Wang
Microorganisms 2025, 13(2), 385; https://doi.org/10.3390/microorganisms13020385 - 10 Feb 2025
Cited by 2 | Viewed by 933
Abstract
This research targets straw return in Farm 852’s albic soil, China. The soil is nutrient-poor with few microbes and slow straw decomposition. Through fixed-point sampling and bacterial screening, an actinomycete consortium consisting of four strains was assembled, and two of them were identified [...] Read more.
This research targets straw return in Farm 852’s albic soil, China. The soil is nutrient-poor with few microbes and slow straw decomposition. Through fixed-point sampling and bacterial screening, an actinomycete consortium consisting of four strains was assembled, and two of them were identified as new actinomycetes. After 7 days of fermentation, the lignocellulose degradation rates of this consortium outstripped those of single strains, with cellulose degraded at 69.07%, hemicellulose at 64.98%, and lignin at 68.95%. FTIR, XRD, and SEM verified the damage inflicted on the straw structure. Lab simulations found group D (with the consortium) had a higher straw weight loss rate than group C (with commercialized microbial agents) and controls. The compound actinomycetes stepped up the bacterial abundance with the passage of time. In contrast, their effect on fungal abundance was hardly noticeable, but they had markedly ameliorated the soil fertility. These findings prove that the microbial consortium effectively accelerates straw decomposition and boosts soil microbe abundance and fertility in albic soil. It shows great potential for straw return and provides a microbial solution for this field. Full article
Show Figures

Figure 1

19 pages, 4134 KiB  
Article
The Fungi–Bacteria Interaction Mechanism of Microbial Consortium During Efficient Lignin Degradation Based on Metabolomics Analysis
by Wen Zhang, Yilei Wen, Zhequan Wang, Chenyang Diao and Zhiwei Liu
Molecules 2025, 30(3), 508; https://doi.org/10.3390/molecules30030508 - 23 Jan 2025
Viewed by 1246
Abstract
Microbial consortium degradation technology can improve the degradation efficiency and adaptability through fungi–bacteria synergism, but the mechanism of the fungi–bacteria interaction is still unclear, making it difficult to optimize the degradation process. The microbial consortium J-6, with high lignin degradation efficiency and strong [...] Read more.
Microbial consortium degradation technology can improve the degradation efficiency and adaptability through fungi–bacteria synergism, but the mechanism of the fungi–bacteria interaction is still unclear, making it difficult to optimize the degradation process. The microbial consortium J-6, with high lignin degradation efficiency and strong environmental adaptability, was obtained in our previous research. In this study, the fungi–bacteria interacting mechanism of the microbial consortium J-6 was inferred based on metabolomics technology. The results showed that the positive interaction between fungi and bacteria could improve the efficiency of lignin degradation. The metabolites released by fungi, especially betanidin and ergosterol, had an impact on bacterial metabolism, promoted the degradation of macromolecules, and significantly increased the lignin degradation efficiency. Metabolites released by bacteria, especially L-phenylalanine and taurine, played a key role in fungal metabolism, leading to more complete degradation. The interaction mechanism of chemical currencies exchange between fungi and bacteria during lignin degradation obtained in this study can provide theoretical guidance for microbial consortium degradation technology. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
Show Figures

Graphical abstract

26 pages, 2267 KiB  
Article
Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation
by João Paulo Silva Monteiro, André Felipe da Silva, Rubens Tadeu Delgado Duarte and Admir José Giachini
Toxics 2024, 12(12), 913; https://doi.org/10.3390/toxics12120913 - 17 Dec 2024
Cited by 2 | Viewed by 1923
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting [...] Read more.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5–C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5–C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

14 pages, 2722 KiB  
Article
Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis
by Thabo J. Moropana, Elbert Lukas Jansen Van Rensburg, Livhuwani Makulana and Nkateko N. Phasha
J. Fungi 2024, 10(12), 811; https://doi.org/10.3390/jof10120811 - 22 Nov 2024
Cited by 2 | Viewed by 1715
Abstract
The global rise in population has led to an increased demand for food production, necessitating the adoption of sustainable agricultural practices. Traditional methods often rely on synthetic chemicals that negatively impact both human health and the environment. This study aimed to screen soil [...] Read more.
The global rise in population has led to an increased demand for food production, necessitating the adoption of sustainable agricultural practices. Traditional methods often rely on synthetic chemicals that negatively impact both human health and the environment. This study aimed to screen soil fungal strains for plant-growth-promoting traits, specifically focusing on their ability to solubilize phosphates, produce indole-3-acetic acid (IAA), and synthesize siderophores. Fungal strains were identified using rDNA sequencing of the ITS regions, and their growth-promoting abilities were assessed in vitro. Aspergillus flavus JKJ7, Talaromyces purpureogenus JKJ12, and Trichoderma koningiopsis JKJ18 exhibited varying degrees of phosphate solubilization, with T. purpureogenus JKJ12 solubilizing the highest amount of tricalcium phosphate (TCP), while A. flavus JKJ7 was the most effective in solubilizing phytic acid calcium salt (PCS). In terms of IAA production, A. flavus JKJ7 produced the highest auxin concentration (68.51 mg/L), followed by T. koningiopsis JKJ18 and T. purpureogenus JKJ12. Additionally, A. flavus JKJ7 produced the highest amount of siderophores (83.7%), indicating its potential for improving iron uptake in plants. Principal Component Analysis (PCA) revealed distinct functional capabilities among the strains, particularly in phosphate solubilization and IAA production, suggesting their complementary use in consortium formulations. These results indicate that these fungal strains possess significant plant-growth-promoting traits and could be used as bioinoculants for sustainable agriculture, either as single strains or in combination Full article
Show Figures

Figure 1

1 pages, 150 KiB  
Abstract
Degradation of Crude Oil by Microbial Populations of Lagos Lagoon Water Microcosms
by Olumide Omotosho
Proceedings 2024, 105(1), 82; https://doi.org/10.3390/proceedings2024105082 - 28 May 2024
Viewed by 471
Abstract
Petroleum hydrocarbon pollution (PHP) poses a significant environmental threat and affects both marine and terrestrial ecosystems. This study focused on the isolation and screening of indigenous petroleum-degrading microorganisms from Mile 2 Lagoon, Lagos, Nigeria. This study aimed to investigate the biodegradability of crude [...] Read more.
Petroleum hydrocarbon pollution (PHP) poses a significant environmental threat and affects both marine and terrestrial ecosystems. This study focused on the isolation and screening of indigenous petroleum-degrading microorganisms from Mile 2 Lagoon, Lagos, Nigeria. This study aimed to investigate the biodegradability of crude oil and analyse the petroleum–hydrocarbon degradation characteristics of microbial consortia on a laboratory scale. Physicochemical analysis of the lagoon water revealed a neutral pH and high nitrate and phosphate concentrations, indicating minimal prior oil pollution. A continuous enrichment method was employed to cultivate microorganisms, using Ecravos light crude oil as the sole carbon and energy source. The enumeration of total heterotrophic microorganisms and hydrocarbon-utilising microorganisms, along with microbial characterisation, was conducted. This study identified three hydrocarbon-utilising bacteria (THUB-1-3) and two fungal strains (THUF-1-2) and demonstrated their ability to degrade crude oil. The growth profile of these isolates showed exponential growth, with the bacterial consortium achieving a maximum concentration of 9.9 × 106 cfu/ml on day 28. Petroleum degradation kinetics showed that the microbial consortium degraded 93% of the crude oil over 42 days, with variations observed in different hydrocarbon fractions. This study provides valuable insights into the potential of indigenous microbial strains to mitigate the ecological impact of oil spills on aquatic environments. Full article
18 pages, 5042 KiB  
Article
Isolation and Characterization of a Low-Temperature, Cellulose-Degrading Microbial Consortium from Northeastern China
by Jiaoyang Ji, Maia Escobar, Shijia Cui, Wei Zhang, Changjie Bao, Xuhan Su, Gang Wang, Sitong Zhang, Huan Chen and Guang Chen
Microorganisms 2024, 12(6), 1059; https://doi.org/10.3390/microorganisms12061059 - 24 May 2024
Cited by 2 | Viewed by 1850
Abstract
The lack of efficient ways to dispose of lignocellulosic agricultural residues is a serious environmental issue. Low temperatures greatly impact the ability of organisms to degrade these wastes and convert them into nutrients. Here, we report the isolation and genomic characterization of a [...] Read more.
The lack of efficient ways to dispose of lignocellulosic agricultural residues is a serious environmental issue. Low temperatures greatly impact the ability of organisms to degrade these wastes and convert them into nutrients. Here, we report the isolation and genomic characterization of a microbial consortium capable of degrading corn straw at low temperatures. The microorganisms isolated showed fast cellulose-degrading capabilities, as confirmed by scanning electron microscopy and the weight loss in corn straw. Bacteria in the consortium behaved as three diverse and functionally distinct populations, while fungi behaved as a single population in both diversity and functions overtime. The bacterial genus Pseudomonas and the fungal genus Thermoascus had prominent roles in the microbial consortium, showing significant lignocellulose waste-degrading functions. Bacteria and fungi present in the consortium contained high relative abundance of genes for membrane components, with amino acid breakdown and carbohydrate degradation being the most important metabolic pathways for bacteria, while fungi contained more genes involved in energy use, carbohydrate degradation, lipid and fatty acid decomposition, and biosynthesis. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 3173 KiB  
Article
Fungal Consortia Mediated Bio-Treatment of Organic Matter and Metals Uptake from Sewage Water: Maize Agro-Physiological Assessment
by Dalel Daâssi, Afef Nasraoui Hajaji, Lama J. H. Alssulime, Shaza N. Alkhatib and Ragaa A. Hamouda
Catalysts 2024, 14(4), 257; https://doi.org/10.3390/catal14040257 - 12 Apr 2024
Viewed by 2245
Abstract
The present investigation aims to improve the efficiency of fungal mono- and mixed cultures in removing organic pollutants and metals from sewage water (SW) for further maize plant response assessments. The reduction in the organic load from the SW was harnessed using a [...] Read more.
The present investigation aims to improve the efficiency of fungal mono- and mixed cultures in removing organic pollutants and metals from sewage water (SW) for further maize plant response assessments. The reduction in the organic load from the SW was harnessed using a co-culture consortium consisting of Aspergillus niger (KB5), Sordariomycetes sp. (D10), and Coniochaetaceae sp. (LB3). The testing results had evinced removal of up to 88% of the organic matter and more than 96%, 91%, 80%, and 47.6%, of removal percentages for Copper (Cu), Nickel (Ni), Cadmium (Cd), and Lead (Pb), respectively, with the developed fungal consortium [KB5 + D10 + LB3]. After treatment and lab experiments, a reuse of treated and untreated SW for plant irrigation was evaluated towards improving maize plant growth. Irrigation was conducted in pot experiments with three types of water: clean water (Control), untreated (USW), and treated SW by fungal consortia (TSW) and by station treatment plant STP (TSWP) using the randomized complete block (RCB) experimental design. Results of the pots trial revealed that the morphological parameters of SW-irrigated plants are slightly improved compared to water-irrigated plants. Data regarding assimilating area attributes indicated that the most significant enlargement of the assimilation area was observed with TSW-D (1/4) irrigation by 1051 cm2, followed by TSWP-D (0) by 953.96 cm2, then USW-D (1/4) by 716.54 cm2, as compared to plants irrigated with clean water (506.91 cm2). On average, the assimilation areas were larger by 51.76%, 46.86%, and 29.25% in TSW, USW, and TSWP-irrigated plants, respectively. Thus, SW irrigation supports the required qualities and quantities of microelements and water for plant growth. Oxidative stress assessment showed that irrigations with treated SW caused a significant decrease in both enzymatic and non-enzymatic antioxidants, depicting that the treatment lowered the stress of sewage water. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

26 pages, 8133 KiB  
Article
Mycotransformation of Commercial Grade Cypermethrin Dispersion by Aspergillus terreus PDB-B Strain Isolated from Lake Sediments of Kulamangalam, Madurai
by Priyadharshini Kannan, Hidayah Baskaran, Jemima Balaselvi Juliana Selvaraj, Agnieszka Saeid and Jennifer Michellin Kiruba Nester
Molecules 2024, 29(7), 1446; https://doi.org/10.3390/molecules29071446 - 23 Mar 2024
Cited by 2 | Viewed by 1594
Abstract
A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation [...] Read more.
A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as Aspergillus glaucus, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, and Aspergillus flavus, respectively. Batch culture and soil microcosm studies were conducted to explore biotransformation using plate-based enzymatic screening and GC-MS. A mycotransformation pathway was predicted based on a comparative analysis of the transformation products (TPs) obtained. The cytotoxicity assay revealed that the presence of (3-methylphenyl) methanol and isopropyl ether could be relevant to the high rate of lethality. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

31 pages, 10999 KiB  
Article
The Molecular Profile of Soil Microbial Communities Inhabiting a Cambrian Host Rock
by Ting Huang, Daniel Carrizo, Laura Sánchez-García, Qitao Hu, Angélica Anglés, David Gómez-Ortiz, Liang-Liang Yu and David C. Fernández-Remolar
Microorganisms 2024, 12(3), 513; https://doi.org/10.3390/microorganisms12030513 - 2 Mar 2024
Cited by 1 | Viewed by 2174
Abstract
The process of soil genesis unfolds as pioneering microbial communities colonize mineral substrates, enriching them with biomolecules released from bedrock. The resultant intricate surface units emerge from a complex interplay among microbiota and plant communities. Under these conditions, host rocks undergo initial weathering [...] Read more.
The process of soil genesis unfolds as pioneering microbial communities colonize mineral substrates, enriching them with biomolecules released from bedrock. The resultant intricate surface units emerge from a complex interplay among microbiota and plant communities. Under these conditions, host rocks undergo initial weathering through microbial activity, rendering them far from pristine and challenging the quest for biomarkers in ancient sedimentary rocks. In addressing this challenge, a comprehensive analysis utilizing Gas Chromatography Mass Spectrometry (GC-MS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was conducted on a 520-Ma-old Cambrian rock. This investigation revealed a diverse molecular assemblage with comprising alkanols, sterols, fatty acids, glycerolipids, wax esters, and nitrogen-bearing compounds. Notably, elevated levels of bacterial C16, C18 and C14 fatty acids, iso and anteiso methyl-branched fatty acids, as well as fungal sterols, long-chained fatty acids, and alcohols, consistently align with a consortium of bacteria and fungi accessing complex organic matter within a soil-type ecosystem. The prominence of bacterial and fungal lipids alongside maturity indicators denotes derivation from heterotrophic activity rather than ancient preservation or marine sources. Moreover, the identification of long-chain (>C22) n-alkanols, even-carbon-numbered long chain (>C20) fatty acids, and campesterol, as well as stigmastanol, provides confirmation of plant residue inputs. Furthermore, findings highlight the ability of contemporary soil microbiota to inhabit rocky substrates actively, requiring strict contamination controls when evaluating ancient molecular biosignatures or extraterrestrial materials collected. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology)
Show Figures

Figure 1

19 pages, 9010 KiB  
Article
Fungal-Bacterial Combinations in Plant Health under Stress: Physiological and Biochemical Characteristics of the Filamentous Fungus Serendipita indica and the Actinobacterium Zhihengliuella sp. ISTPL4 under In Vitro Arsenic Stress
by Neha Sharma, Monika Koul, Naveen Chandra Joshi, Laurent Dufossé and Arti Mishra
Microorganisms 2024, 12(2), 405; https://doi.org/10.3390/microorganisms12020405 - 17 Feb 2024
Cited by 9 | Viewed by 3037
Abstract
Fungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica [...] Read more.
Fungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tolerance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions. The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and the effect of arsenic on spore size and morphology of S. indica was determined using confocal microscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricaprylate, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp. ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore degeneration and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the suggested combination of microbial consortium can be used to increase sustainable agriculture by combating biotic as well as abiotic stress. This is because the metabolites released by the microbial combination display antifungal and antibacterial properties. The metabolites, besides evading stress, also confer other survival strategies. Therefore, the choice of consortia and combination partners is important and can help in developing strategies for coping with As stress. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Polyphenols-Rich Extract of Calotropis procera Alone and in Combination with Trichoderma Culture Filtrate for Biocontrol of Cantaloupe Wilt and Root Rot Fungi
by Ashraf M. Nofal, Ragaa A. Hamouda, Amira Rizk, Mohamed Abd El-Rahman, Adel K. Takla, Hoda Galal, Mashael Daghash Alqahtani, Basmah M. Alharbi, Amr Elkelish and Sabery Shaheen
Molecules 2024, 29(1), 139; https://doi.org/10.3390/molecules29010139 - 26 Dec 2023
Cited by 3 | Viewed by 2419
Abstract
Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to fungicides without side effects could be by using bio agents and naturally occurring plants with antibacterial potential. [...] Read more.
Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to fungicides without side effects could be by using bio agents and naturally occurring plants with antibacterial potential. This study has achieved a novel procedure for managing wilt and root rot diseases by potentially using Trichoderma sp. culture filtrates in consortium with plant extract of Calotropis procera, Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which were isolated from infected cantaloupe roots with identified root rot symptoms. The antagonistic activity of four Trichoderma isolates and analysis of antibiotics and filtrate enzymes of the most active Trichoderma isolate were determined as well as phytochemical analysis of C. procera plant extract using HPLC-UV. The obtained results showed that all Trichoderma isolates considerably lowered the radial growth of P. ultimum, R. solani, and F. oxysporum in varying degrees. The scanning electron micrographs illustrate the mycoparasitic nature of Trichoderma sp. on F. oxysporum. The phytochemical analysis of C. procera indicated that phenolic contents were the major compounds found in extracts, such as vanillin (46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%) but including only a low amount of the flavonoid compounds rutin, naringenin, and hesperetin. The Pot experiment’s findings showed that cantaloupe was best protected against wilting and root rot diseases when it was treated with both Trichoderma sp. culture filtrates (10%) and C. procera extract of (15 mg/mL), both alone and in combination. This study demonstrates that the application of bio agent Trichoderma spp. filtrate with C. procera phenol extract appears useful for controlling wilting and root rot disease in cantaloupe. This innovative approach could be used as an alternative to chemical fungicide for the control of wilting and rot root diseases. Full article
Show Figures

Graphical abstract

17 pages, 2057 KiB  
Article
Improving Tannery Wastewater Treatments Using an Additional Microbial Treatment with a Bacterial–Fungal Consortium
by Fuad Ameen
Biology 2023, 12(12), 1507; https://doi.org/10.3390/biology12121507 - 8 Dec 2023
Cited by 1 | Viewed by 2627
Abstract
Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques [...] Read more.
Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques was evaluated in four tanneries in Saudi Arabia. It was observed that the wastewaters contained high amounts of pollutants, needing further treatment. We isolated microorganisms from the wastewaters and carried out experiments to treat the effluents with different bacteria, fungi, and their consortia. We hypothesized that a consortium of microorganisms is more efficient than the single microorganisms in the consortium. The efficiency of five single bacterial and five fungal species from different genera was tested. In a consortium experiment, the efficiency of nine bacterial–fungal consortia was studied. The bacterium Corynebacterium glutamicum and the fungus Acremonium sp. were the most efficient in the single-microbe treatment. In the consortium treatment, the consortium of these two was the most efficient at treating the effluent. The factory wastewater treatment reduced total dissolved solids (TDS) from 1885 mg/L to 880 mg/L. C. glutamicum treatment reduced TDS to 150 mg/L and Acremonium sp. to 140 mg/L. The consortium of these two reduced TDS further to 80 mg/L. Moreover, the factory treatment reduced BOD from 943 mg/L to 440 mg/L, C. glutamicum to 75 mg/L, and Acremonium sp. 70 mg/L. The consortium reduced BOD further to 20 mg/L. The total heavy-metal concentration (Cd, Cr, Cu, Mn, and Pb) was reduced by the factory treatment from 43 μg/L to 26 μg/L and by the consortium to 0.2 μg/L. The collagen concentration that was studied using hydroxyproline assay decreased from 120 mg/L to 39 mg/L. It was shown that the consortium of the bacterium C. glutamicum and the fungus Acremonium sp. was more efficient in reducing the pollutants than the single species. The consortium reduced almost all parameters to below the environmental regulation limit for wastewater discharge to the environment in Saudi Arabia. The consortium should be studied further as an additional treatment to the existing conventional tannery wastewater treatments. Full article
Show Figures

Figure 1

Back to TopTop