Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = full-scale desulfurization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 767 KB  
Review
Enhancing Anaerobic Digestion of Agricultural By-Products: Insights and Future Directions in Microaeration
by Ellie B. Froelich and Neslihan Akdeniz
Bioengineering 2025, 12(10), 1117; https://doi.org/10.3390/bioengineering12101117 - 18 Oct 2025
Viewed by 451
Abstract
Anaerobic digestion of manures, crop residues, food waste, and sludge frequently yields biogas with elevated hydrogen sulfide concentrations, which accelerate corrosion and reduce biogas quality. Microaeration, defined as the controlled addition of oxygen at 1 to 5% of the biogas production rate, has [...] Read more.
Anaerobic digestion of manures, crop residues, food waste, and sludge frequently yields biogas with elevated hydrogen sulfide concentrations, which accelerate corrosion and reduce biogas quality. Microaeration, defined as the controlled addition of oxygen at 1 to 5% of the biogas production rate, has been investigated as a low-cost desulfurization strategy. This review synthesizes studies from 2015 to 2025 spanning laboratory, pilot, and full-scale anaerobic digester systems. Continuous sludge digesters supplied with ambient air at 0.28–14 m3 h−1 routinely achieved 90 to 99% H2S removal, while a full-scale dairy manure system reported a 68% reduction at 20 m3 air d−1. Pure oxygen dosing at 0.2–0.25 m3 O2 (standard conditions) per m3 reactor volume resulted in greater than 99% removal. Reported methane yield improvements ranged from 5 to 20%, depending on substrate characteristics, operating temperature, and aeration control. Excessive oxygen, however, reduced methane yields in some cases by inhibiting methanogens or diverting carbon to CO2. Documented benefits of microaeration include accelerated hydrolysis of lignocellulosic substrates, mitigation of sulfide inhibition, and stimulation of sulfur-oxidizing bacteria that convert sulfide to elemental sulfur or sulfate. Optimal redox conditions were generally maintained between −300 and −150 mV, though monitoring was limited by low-resolution oxygen sensors. Recent extensions of the Anaerobic Digestion Model No. 1 (ADM1), a mathematical framework developed by the International Water Association, incorporate oxygen transfer and sulfur pathways, enhancing its ability to predict gas quality and process stability under microaeration. Economic analyses estimate microaeration costs at 0.0015–0.0045 USD m−3 biogas, substantially lower than chemical scrubbing. Future research should focus on refining oxygen transfer models, quantifying microbial shifts under long-term operation, assessing effects on digestate quality and nitrogen emissions, and developing adaptive control strategies that enable reliable application across diverse substrates and reactor configurations. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

17 pages, 1486 KB  
Article
Effect of Lignite Composition on Mercury Removal from Flue Gas in Sulfide Forced Wet Flue Gas Desulfurization (WFGD) Installations—Full-Scale Experiments
by Dariusz Łuszkiewicz, Maria Jędrusik, Arkadiusz Świerczok, Mariola Kobylańska-Pawlisz, Karel Borovec and Lukas Pilar
Energies 2025, 18(8), 1982; https://doi.org/10.3390/en18081982 - 12 Apr 2025
Viewed by 487
Abstract
In this article, the results of full-scale experiments on the addition of a sodium sulfide to the CaCO3 slurry circuit in a wet flue gas desulfurization (WFGD) plant are presented. Tests are performed on two comparable WFGD installations (spray tower, 4 spraying [...] Read more.
In this article, the results of full-scale experiments on the addition of a sodium sulfide to the CaCO3 slurry circuit in a wet flue gas desulfurization (WFGD) plant are presented. Tests are performed on two comparable WFGD installations (spray tower, 4 spraying levels and two stage gypsum de-watering by hydrocyclones and vacuum belt filter) which allows the investigation of the influence of lignite composition (lignite mined in Poland and the Czech Republic are compared) on the reduction in mercury emission. Additionally, the efficiency of precipitation of metals from the slurry (Hg, Zn, Pb, Cd, Cr, Cu, Ni, Fe, Se, and Mn) is investigated as the result of sulfide addition. For both objects, mercury re-emission from absorber occurs (the concentration of mercury in the chimney is higher than that before the WFGD absorber) and the sulfide addition to WFGD slurry stops this phenomenon. The addition of sulfide works effectively (mercury removal efficiency from flue gas reaches up to 88% for Polish tests and up to 87% for Czech Republic tests). For the tests in the Poland power plant, all of measured metals are precipitated from the slurry (precipitation of metals efficiency varied from 2% for zinc to 88% for mercury), but in the case of the test in the power plant in the Czech Republic, there is no effect on manganese, iron, and lead (precipitation of metals efficiency varied from 6.5% for copper to 86% for mercury). The addition of sulfide works effectively for lignite mined in Polish and Czech power plants under the conditions of similar WFGD installations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 3719 KB  
Article
Removal of Organic Sulfur Pollutants from Gasification Gases at Intermediate Temperature by Means of a Zinc–Nickel-Oxide Sorbent for Integration in Biofuel Production
by Josemaria Sánchez-Hervás, Isabel Ortiz, Veronica Martí and Alberto Andray
Catalysts 2023, 13(7), 1089; https://doi.org/10.3390/catal13071089 - 11 Jul 2023
Cited by 8 | Viewed by 3671
Abstract
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex [...] Read more.
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex approach comprising catalytic hydro-treating followed by H2S removal. In this work, a single-stage process using a zinc and nickel oxide sorbent has been investigated for the removal of organic sulfur species present in syngas. The process is called reactive adsorption and comes from the refinery industry. The challenge investigated by CIEMAT was to prove for the first time that the concept is also valid for syngas. We have studied the process at a lab scale. Thiophene and benzothiophene, two of the main syngas organic sulfur compounds, were selected as target species to remove. The experimental study comprised the analysis of the effect of temperature (250–450 °C), pressure (1–10 bar), space velocity (2000–3500 h−1), tar components (toluene), sulfur species (H2S), and syngas components (H2, CO, and full syngas CO/CO2/CH4/H2). Operating conditions for removal of thiophene and benzothiophene were determined. Increasing pressure and temperature had a positive effect, and full conversion was achieved at 450 °C, 10 bar and 3500 h−1, accompanied by simultaneous hydrogen sulfide capture by the sorbent in accordance with the reactive adsorption desulfurization (RADS) process. Space velocity and hydrogen content in the syngas had little effect on desulfurization. Thiophene conversions from 39% to 75% were obtained when feeding synthetic syngas mimicking different compositions, spanning from air to steam-oxygen-blown gasification. Toluene, as a model tar component present in syngas, did not strongly affect the removal of thiophene and benzothiophene. H2S inhibited their conversion, falling, respectively, to 2% and 69% at 350 °C and 30% and 80% at 400 °C under full syngas blends. Full article
(This article belongs to the Special Issue Designing Catalytic Desulfurization Processes to Prepare Clean Fuels)
Show Figures

Figure 1

23 pages, 6008 KB  
Article
Numerical Investigations for the Two-Phase Flow Structures and Chemical Reactions within a Tray Flue Gas Desulfurization Tower by Porous Media Model
by Chien-Chou Tseng and Cheng-Jui Li
Appl. Sci. 2022, 12(5), 2276; https://doi.org/10.3390/app12052276 - 22 Feb 2022
Cited by 3 | Viewed by 2676
Abstract
The computational cost of the full-scale flue gas desulfurization (FGD) tower with perforated sieve trays is too high, considering the enormous scale ratio between the perforated hole at the sieve tray and the relevant size of the full-scale tower. As a result, the [...] Read more.
The computational cost of the full-scale flue gas desulfurization (FGD) tower with perforated sieve trays is too high, considering the enormous scale ratio between the perforated hole at the sieve tray and the relevant size of the full-scale tower. As a result, the porous media model is used to replace the complex perforated structure at the sieve tray in this study, which has been validated for the measured data for both the small- and full-scale FGD tower. Under a lower inlet gas volume flow rate, the simulation result of the four-tray tower indicates that the uprising gas flow of high SO2 mass fraction can move along the wall of the tower. This region lacks two-phase mixing and, hence, its desulfurization efficiency is similar to that of empty and one-tray towers under the same flow conditions. However, when the gas volume flow rate increases, the liquid column becomes larger because of the stronger inertial of the uprising gas flow. In this situation, the implementation of the sieve tray suppresses the deflection of liquid flow and provides a better mixing within sieve trays, leading to a noticeable increase in desulfurization efficiency. This study provides insightful information for the design guideline for the relevant industries. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

19 pages, 3553 KB  
Article
Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy
by Apostolos Spyridonidis, Ioanna A. Vasiliadou, Christos S. Akratos and Κaterina Stamatelatou
Water 2020, 12(11), 3074; https://doi.org/10.3390/w12113074 - 2 Nov 2020
Cited by 27 | Viewed by 9006
Abstract
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting [...] Read more.
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed). Full article
Show Figures

Figure 1

19 pages, 9617 KB  
Article
Properties of Sulfur Particles Formed in Biodesulfurization of Biogas
by Annemerel R. Mol, Renata D. van der Weijden, Johannes B.M. Klok and Cees J.N. Buisman
Minerals 2020, 10(5), 433; https://doi.org/10.3390/min10050433 - 11 May 2020
Cited by 34 | Viewed by 7414
Abstract
In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in [...] Read more.
In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in various industries. However, if the sulfur particles do not settle, it will lead to operational difficulties. In this study, we investigated the properties of sulfur formed in five industrial BD facilities. Sulfur particles from all samples showed large differences in terms of shape, size, and settleability. Both single crystals (often bipyramidal) and aggregates thereof were observed with light and scanning electron microscopy. The small, non-settled particles account for at least 13.6% of the total number of particles and consists of small individual particles with a median of 0.3 µm. This is undesirable, because those particles cannot be removed from the BD facility by gravitational settling and lead to operational interruption. The particles with good settling properties are aggregates (5–20 µm) or large single crystals (20 µm). We provide hypotheses as to how the differences in sulfur particle properties might have occurred. These findings provide a basis for understanding the relation between sulfur particle properties and formation mechanisms. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

17 pages, 3304 KB  
Article
A Holistic and Experimentally-Based View on Recycling of Off-Gas Dust within the Integrated Steel Plant
by Anton Andersson, Amanda Gullberg, Adeline Kullerstedt, Erik Sandberg, Mats Andersson, Hesham Ahmed, Lena Sundqvist-Ökvist and Bo Björkman
Metals 2018, 8(10), 760; https://doi.org/10.3390/met8100760 - 25 Sep 2018
Cited by 12 | Viewed by 4123
Abstract
Ore-based ironmaking generates a variety of residues, including slags and fines such as dust and sludges. Recycling of these residues within the integrated steel plant or in other applications is essential from a raw-material efficiency perspective. The main recycling route of off-gas dust [...] Read more.
Ore-based ironmaking generates a variety of residues, including slags and fines such as dust and sludges. Recycling of these residues within the integrated steel plant or in other applications is essential from a raw-material efficiency perspective. The main recycling route of off-gas dust is to the blast furnace (BF) via sinter, cold-bonded briquettes and tuyere injection. However, solely relying on the BF for recycling implicates that certain residues cannot be recycled in order to avoid build-up of unwanted elements, such as zinc. By introducing a holistic view on recycling where recycling via other process routes, such as the desulfurization (deS) station and the basic oxygen furnace (BOF), landfilling can be avoided. In the present study, process integration analyses were utilized to determine the most efficient recycling routes for off-gas dust that are currently not recycled within the integrated steel plants of Sweden. The feasibility of recycling was studied in experiments conducted in laboratory, pilot, and full-scale trials in the BF, deS station, and BOF. The process integration analyses suggested that recycling to the BF should be maximized before considering the deS station and BOF. The experiments indicated that the amount of residue that are not recycled could be minimized. Full article
Show Figures

Figure 1

20 pages, 2261 KB  
Article
Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces
by Haoran Zhao, Sen Guo and Huiru Zhao
Sustainability 2018, 10(3), 657; https://doi.org/10.3390/su10030657 - 1 Mar 2018
Cited by 27 | Viewed by 4534
Abstract
Atmospheric pollution gradually become a focus of concern all over the world owing to its detrimental influence on human health as well as long range impact on global ecosystem. This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, [...] Read more.
Atmospheric pollution gradually become a focus of concern all over the world owing to its detrimental influence on human health as well as long range impact on global ecosystem. This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure of five provinces in China with the highest SO2 emissions spanning from 2002–2015 based on panel data model. Through comparatively analyzing the coefficients in the established panel data model for Hebei, Henan, Inner Mongolia, Shandong, and Shanxi, we can obtain that: (1) fossil fuel energy consumption made the most devotion to SO2 discharge compared with GDP, energy consumption intensity, and economic structure. And the more the fossil fuel energy consumption, the more the devotion made by it to SO2 discharge. (2) GDP devoted less to SO2 emissions than fossil fuel energy consumption, and the larger the scale of the economy, the greater the contribution made by it to SO2 emissions. (3) The higher the proportion of the secondary industry added value accounted in GDP, the more the devotion made by the economic structure and energy consumption intensity to SO2 emissions. Through analyzing the Granger causality examination results, it can be concluded that: (1) there existed a bi-directional causal relationship between fossil fuel energy consumption and SO2 emissions among five selected provinces. (2) There existed uni-directional causal nexus running from GDP to SO2 emissions, from energy consumption intensity to SO2 emissions, and from economic structure to SO2 emissions among five chosen provinces. Based on the empirical analysis, several policy implications were proposed to provide references for policy makers, which were (1) Giving full play to the guiding role of price signals, and improving the price policy for desulfurization. (2) Formulating a new comprehensive evaluation system to measure the regional development level considering economic development and environmental impacts. (3) Exploring renewable and sustainable energy sources to substitute for fossil fuel energy according to regional resources endowment. (4) Developing high value added and low pollution emissions industries and reducing the proportion of secondary industry. Full article
Show Figures

Graphical abstract

Back to TopTop