Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = full-energy peak unfolding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7695 KiB  
Article
Pseudo-Gamma Spectroscopy Based on Plastic Scintillation Detectors Using Multitask Learning
by Byoungil Jeon, Junha Kim, Eunjoong Lee, Myungkook Moon and Gyuseong Cho
Sensors 2021, 21(3), 684; https://doi.org/10.3390/s21030684 - 20 Jan 2021
Cited by 16 | Viewed by 4234
Abstract
Although plastic scintillation detectors possess poor spectroscopic characteristics, they are extensively used in various fields for radiation measurement. Several methods have been proposed to facilitate their application of plastic scintillation detectors for spectroscopic measurement. However, most of these detectors can only be used [...] Read more.
Although plastic scintillation detectors possess poor spectroscopic characteristics, they are extensively used in various fields for radiation measurement. Several methods have been proposed to facilitate their application of plastic scintillation detectors for spectroscopic measurement. However, most of these detectors can only be used for identifying radioisotopes. In this study, we present a multitask model for pseudo-gamma spectroscopy based on a plastic scintillation detector. A deep- learning model is implemented using multitask learning and trained through supervised learning. Eight gamma-ray sources are used for dataset generation. Spectra are simulated using a Monte Carlo N-Particle code (MCNP 6.2) and measured using a polyvinyl toluene detector for dataset generation based on gamma-ray source information. The spectra of single and multiple gamma-ray sources are generated using the random sampling technique and employed as the training dataset for the proposed model. The hyperparameters of the model are tuned using the Bayesian optimization method with the generated dataset. To improve the performance of the deep learning model, a deep learning module with weighted multi-head self-attention is proposed and used in the pseudo-gamma spectroscopy model. The performance of this model is verified using the measured plastic gamma spectra. Furthermore, a performance indicator, namely the minimum required count for single isotopes, is defined using the mean absolute percentage error with a criterion of 1% as the metric to verify the pseudo-gamma spectroscopy performance. The obtained results confirm that the proposed model successfully unfolds the full-energy peaks and predicts the relative radioactivity, even in spectra with statistical uncertainties. Full article
Show Figures

Figure 1

Back to TopTop