Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = fruit pods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1820 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 (registering DOI) - 4 Aug 2025
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 226
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 2412 KiB  
Article
Postharvest Application of Myo-Inositol Extends the Shelf-Life of Banana Fruit by Delaying Ethylene Biosynthesis and Improving Antioxidant Activity
by Lingyu Hu, Yi Li, Kun Zhou, Kaili Shi, Yi Niu, Feng Qu, Shenglin Zhang, Weidi He and Yuanli Wu
Foods 2025, 14(15), 2638; https://doi.org/10.3390/foods14152638 - 28 Jul 2025
Viewed by 322
Abstract
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana [...] Read more.
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana remains to be determined. This study found that postharvest application of MI could efficiently delay the fruit ripening and extend the time in which the luster, color, and hardness were maintained in two cultivars with contrasting storage characteristics, storable ‘Brazil’ and unstorable ‘Fenza No. 1’, when stored at room temperature (23 °C ± 2 °C). Moreover, physiological, metabolic, and gene expression analyses indicated that MI application improved MI metabolism and postponed ethylene biosynthesis and cell wall loosening. The decrease in ethylene production was associated with a reduction in the expression of ACS1 and ACO1 genes. MI treatment decreased the expressions of PL1/2, PG, and EXP1/7/8, which may account for the delay in softening. In addition, the application of MI could alleviate ROS-mediated senescence and cell membrane damage by promoting the activities of SOD, POD, and anti-O2 and decreasing PPO activity. This study shed light on the function of MI in regulating the postharvest ripening and senescence of bananas and provided an efficient strategy for extending shelf-life and reduce losses. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 1244 KiB  
Article
Changes in the Quality of Idesia polycarpa Maxim Fruits from Different Ecotypes During the Growth Process
by Yi Yang, Chao Miao, Qiupeng Yuan, Wenwen Zhong, Zuwei Hu, Chen Chen, Zhen Liu, Yanmei Wang, Xiaodong Geng, Qifei Cai, Li Dai, Juan Wang, Yongyu Ren, Fangming Liu, Haifei Lu, Tailin Zhong and Zhi Li
Plants 2025, 14(15), 2324; https://doi.org/10.3390/plants14152324 - 27 Jul 2025
Viewed by 282
Abstract
The goal of this study was to build an understanding of the quality of Idesia polycarpa fruit Maxim from different ecotypes and to identify the best cultivars, with a view to providing a reference and theoretical basis for the selection and cultivation of [...] Read more.
The goal of this study was to build an understanding of the quality of Idesia polycarpa fruit Maxim from different ecotypes and to identify the best cultivars, with a view to providing a reference and theoretical basis for the selection and cultivation of I. polycarpa. In this study, we systematically evaluated the fruit quality characteristics of five seed sources, namely SH, SG1, GG, HX, and SG2, at four developmental stages, M1-M4, through a principal component analysis, a correlation analysis, and a significance test. Comparisons between the ecotype yielded that GG was significantly better than the other ecotype in oil content (28.7%) and fresh weight per cluster (155.56 g), while HX exhibited higher SOD content (278.18 U/g) and soluble protein content (27.50 mg·g−1), suggesting a higher level of stress tolerance. The results of the correlation analysis showed that POD was significantly negatively correlated with oil content (r = −0.633) and SOD (r = −0.617) activities, indicating that the antioxidant enzyme system may affect oil accumulation. The results of the principal component analysis showed that the cumulative contribution of the first four principal components reached 89.72%, of which principal component 1 mainly reflected yield-related traits, and principal component 2 was significantly correlated with oil content and soluble protein. Through the evaluation and screening of the five ecotypes, we determined that GG can be utilized as a good single plant in the selection and improvement of new cultivars; our findings can provide theoretical support for the selection of good cultivars of I. polycarpa seed in the central region of Henan. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

15 pages, 881 KiB  
Article
Effects of Modified Atmosphere Packaging on Postharvest Physiology and Quality of ‘Meizao’ Sweet Cherry (Prunus avium L.)
by Jianchao Cui, Xiaohui Jia, Wenhui Wang, Liying Fan, Wenshi Zhao, Limin He and Haijiao Xu
Agronomy 2025, 15(8), 1774; https://doi.org/10.3390/agronomy15081774 - 24 Jul 2025
Viewed by 407
Abstract
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet [...] Read more.
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet cherry during 60 days of cold storage (0 ± 0.5 °C). Fruits were sealed in four types of MAP low-density polyethylene (LDPE) liners (PE20, PE30, PE40, and PE50), with unsealed 20 μm LDPE packaging bags used as the control. Our findings demonstrated that PE30 packaging established an optimal gas composition (7.0~7.7% O2 and 3.6~3.9% CO2) that effectively preserved ‘Meizao’ sweet cherry quality. It maintained the fruit color, firmness, soluble solid content (SSC), titratable acidity (TA), and vitamin C (Vc) content while simultaneously delaying deteriorative processes such as weight loss, pedicel browning, and fruit decay. These results indicate that PE30 was the most suitable treatment for preserving the quality of ‘Meizao’ sweet cherries during cold storage. Furthermore, physiological research showed that significant inhibition of respiration rate was achieved by PE30, accompanied by maintained activities of antioxidant enzymes (CAT, POD, and SOD), which consequently led to reduced accumulations of ethanol and malondialdehyde (MDA) during cold storage. To date, no systematic studies have investigated the physiological and biochemical responses of ‘Meizao’ to different thickness-dependent LDPE-MAP conditions. These observations highlight the power of the optimized PE30 packaging as an effective method for extending the fruit storage life, delaying postharvest senescence, and maintaining fruit quality of ‘Meizao’ sweet cherry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 271
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 1308 KiB  
Article
Novel Active Films with Semolina and Jatoba (Hymenaea courbaril L.): Preparation, Properties, and Sustainability Aspects
by Cristiani Viegas Brandão Grisi, Flávia Cosmo Guedes da Silva, Rita de Cassia Andrade Silva, Rene Pinto da Silva, Fábio Anderson Pereira da Silva and Angela Maria Tribuzy de Magalhães Cordeiro
Foods 2025, 14(13), 2391; https://doi.org/10.3390/foods14132391 - 6 Jul 2025
Viewed by 418
Abstract
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), [...] Read more.
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), inverted sugar (1% w/w), and sucrose (1% w/w), incorporating hydroalcoholic extracts from jatoba stem bark (X1) and pods (X2) at concentrations ranging from 0 to 1% (w/w). The films were characterized in terms of their functional, physical, chemical, structural, and degradation properties. The formulation that showed the best performance, referred to as the optimized formulation (FO), contained 0.5% X1 and 0.5% X2, presenting a high phenolic compound content (8.80 mg GAE/g), strong antioxidant activity as determined by the DPPH method (75.28%) and FRAP assay (6.02 mmol FeSO4/g), good thermal stability (350 °C), and a high soil degradation rate (83.47% in 15 days). These results indicate that the FO film has potential application as a primary packaging material with antioxidant function for oxidation-sensitive foods, meeting the demand for biodegradable and environmentally sustainable solutions in the food industry. Full article
Show Figures

Figure 1

15 pages, 1741 KiB  
Article
Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting
by Gengyun Li, Jiamei Zou, Tianrui Gong, Xuejiao Li, Jing Meng, Jie Zhang, Bin Xu and Shuilian He
Horticulturae 2025, 11(7), 778; https://doi.org/10.3390/horticulturae11070778 - 3 Jul 2025
Viewed by 302
Abstract
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is [...] Read more.
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is partly due to the insufficient collection and evaluation of local figleaf gourd germplasm, which has obscured its potential as a rootstock. Based on prior screening, four wild figleaf gourd genotypes from Yunnan Province were selected and compared with seven commercial white-seeded pumpkin rootstocks. Scions grafted onto figleaf gourd exhibited vegetative growth (stem diameter, plant height, and leaf area) and fruit morphology (length, diameter, biomass, and surface bloom) comparable to the top-performing white-seeded pumpkin genotypes. Fruits from figleaf gourd rootstocks also displayed comparable or significantly higher nutritional quality, including vitamin C, total soluble solids, soluble sugars, and proteins. Notably, figleaf gourd itself showed significantly greater intrinsic resistance to Fusarium wilt than white-seeded pumpkin. When used as a rootstock, it protected the scion from pathogen stress by triggering a stronger antioxidant response (higher SOD and POD activity) and mitigating cellular damage (lower MDA levels and electrolyte leakage). These results provide evidence that these figleaf gourd genotypes are not merely viable alternatives but are high-performing rootstocks, particularly in enhancing nutritional value and providing elite disease resistance. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

21 pages, 3208 KiB  
Article
Inhibitory Effect and Potential Mechanism of Trans-2-Hexenal Treatment on Postharvest Rhizopus Rot of Peach Fruit
by Xuanyi Cai, Wen Xiang, Liangyi Zhao, Ziao Liu, Ye Li, Yuan Zeng, Xinyan Shen, Yinqiu Bao, Yonghua Zheng and Peng Jin
Foods 2025, 14(13), 2265; https://doi.org/10.3390/foods14132265 - 26 Jun 2025
Viewed by 388
Abstract
Peach fruit faces severe postharvest losses due to thin epidermis and susceptibility to Rhizopus stolonifer-induced soft rot. Chemical control risks residue and resistance issues, demanding eco-friendly alternatives. This study elucidated the mechanism by which trans-2-hexenal (E2H) mitigated postharvest soft rot caused by [...] Read more.
Peach fruit faces severe postharvest losses due to thin epidermis and susceptibility to Rhizopus stolonifer-induced soft rot. Chemical control risks residue and resistance issues, demanding eco-friendly alternatives. This study elucidated the mechanism by which trans-2-hexenal (E2H) mitigated postharvest soft rot caused by Rhizopus stolonifer in peach (Prunus persica cv. Hujing Milu) fruit. The results demonstrated that E2H treatment significantly delayed lesion expansion by 44.7% and disease incidence by 23.9% while effectively maintaining fruit quality by delaying firmness loss, reducing juice leakage, and suppressing malondialdehyde (MDA) accumulation. E2H treatment upregulated phenylpropanoid pathway gene expression, enhancing key phenylpropanoid metabolism enzymes activities (phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), polyphenol oxidase (PPO), peroxidase (POD)), leading to the increase of total phenolics by 7.9%. E2H treatment analysis revealed significant enhancements in both chitinolytic activity (CHI) and β-1,3-glucanase (GLU) activity by 85.7% and 12.9%, indicating potentiation of the enzymatic defense system. Concurrently, E2H treatment could improve the redox modulation capacity of peach fruits through promoting catalytic efficiency of redox-regulating enzymes, increasing the accumulation of ascorbic acid (AsA) by 8.1%, inhibiting the synthesis of dehydroascorbic acid (DHA) by 18.6%, as well as suppressing the biosynthesis of reactive oxygen species (ROS). These coordinated enhancements in pathogenesis-related proteins (CHI, GLU), phenylpropanoid metabolism activation, and antioxidant systems are strongly associated with E2H-induced resistance against Rhizopus stolonifer, though contributions from other factors may also be involved. Full article
(This article belongs to the Special Issue Postharvest Technologies and Applications in Food and Its Products)
Show Figures

Figure 1

17 pages, 222 KiB  
Article
Short-Season Direct-Seeded Cotton Cultivation Under Once-Only Irrigation Throughout the Growing Season: Investigating the Effects of Planting Density and Nitrogen Application
by Zhangshu Xie, Yeling Qin, Xuefang Xie, Xiaoju Tu, Aiyu Liu and Zhonghua Zhou
Plants 2025, 14(12), 1864; https://doi.org/10.3390/plants14121864 - 17 Jun 2025
Viewed by 499
Abstract
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha [...] Read more.
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha−1) and three nitrogen application rates (150 (N1), 180 (N2), and 210 (N3) kg·ha−1). Our study systematically examined how these treatment combinations influenced canopy architecture, physiological traits, yield components, and fiber quality. The results showed that increased planting density significantly enhanced plant height, the leaf area index (LAI), and the number of fruiting branches, with the highest density (D3) contributing to a more compact and efficient canopy. Moderate nitrogen input (N2) significantly increased peroxidase (POD) activity, reduced malondialdehyde (MDA) accumulation, delayed functional leaf senescence, and prolonged the canopy’s photosynthetic performance. A significant interaction between planting density and nitrogen application was observed. The D3N2 treatment (high density with moderate nitrogen) consistently achieved the highest fruiting branch count, boll number per plant, and yields of both seed cotton and lint in both years, while maintaining stable fiber quality. This indicates its strong capacity to balance high yield with quality and maintain physiological resilience. By contrast, the D1N1 treatment (low density and low nitrogen) exhibited a loose canopy, premature photosynthetic decline, and the lowest yield. The D3N3 treatment (high density and high nitrogen) promoted vigorous early growth but reduced stress tolerance during later growth stages, leading to yield instability. These findings demonstrate that moderately increasing planting density while maintaining appropriate nitrogen levels can effectively optimize canopy structure, improve stress resilience, and enhance yield under short-season direct-seeded cotton systems with once-only irrigation. This provides both theoretical underpinning and practical guidance for achieving stable and efficient cotton production under such systems. Full article
21 pages, 1894 KiB  
Article
Optimizing Cocoa Productivity Through Soil Health and Microbiome Enhancement: Insights from Organic Amendments and a Locally Derived Biofertilizer
by Jennifer E. Schmidt, Julia Flores, Luigy Barragan, Freddy Amores and Sat Darshan S. Khalsa
Microorganisms 2025, 13(6), 1408; https://doi.org/10.3390/microorganisms13061408 - 17 Jun 2025
Viewed by 661
Abstract
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer [...] Read more.
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer on soil physical, chemical, and biological properties, as well as cocoa flowering, fruit set, and yield, was conducted in Guayaquil, Ecuador. Complementary culture-dependent and culture-independent methods were used to assess the impacts of amendments on microbial diversity, community composition, and specific taxa. Compost or vermicompost application affected soil chemical properties, including potassium, phosphorus, and sodium, and had small but significant effects on fungal beta diversity. Biofertilizer application slightly lowered soil pH and altered the total abundance of specific taxonomic groups including Azotobacter sp. and Trichoderma sp., with borderline significant effects on Azospirillum sp., Lactobacillus sp., Pseudomonas sp., calcium-solubilizing bacteria, and phosphorus-solubilizing bacteria. Amplicon sequencing (16S, ITS) identified 15 prokaryotic and 68 fungal taxa whose relative abundance was influenced by organic amendments or biofertilizer. Biofertilizer application increased cherelle formation by 19% and monthly harvestable pod counts by 11% despite no impact on flowering index or annual pod totals. This study highlights the tangible potential of microbiome optimization to simultaneously improve on-farm yield and achieve soil health goals on cocoa farms. Full article
Show Figures

Figure 1

19 pages, 5254 KiB  
Article
Genome-Wide Identification and Characterization of the Polygalacturonase Gene Family in Common Vetch (Vicia sativa)
by Xiaobing Yang, Tianmiao Liu, Zhongfu Yang, Zhou Li, Xuechun Zhao, Jihui Chen, Xinyao Gu, Jin He, Chao Chen and Rui Dong
Agronomy 2025, 15(6), 1457; https://doi.org/10.3390/agronomy15061457 - 15 Jun 2025
Viewed by 493
Abstract
The polygalacturonase (PG) gene family plays a crucial role in plant cell wall metabolism and participates in various biological processes, such as fruit ripening, pod dehiscence, and pollen tube growth. However, the members of the PG gene family in Vicia sativa [...] Read more.
The polygalacturonase (PG) gene family plays a crucial role in plant cell wall metabolism and participates in various biological processes, such as fruit ripening, pod dehiscence, and pollen tube growth. However, the members of the PG gene family in Vicia sativa remain largely unexplored. We identified and analyzed the PG gene family members in V. sativa to investigate their gene expansion, functional evolution, and potential associations with agronomic traits. A total of 83 V. sativa PG genes (VsPGs) were identified, 51 of which retained all four characteristic PG domains (I–IV). We classified the VsPGs into seven subgroups (A–G) based on the results of phylogenetic analysis, and collinearity analysis suggested that segmental duplication was the primary driver of family expansion. The VsPG promoters were enriched with elements responsive to abscisic acid, low temperatures, and aluminum stress. Transcriptomic and qPCR analyses revealed tissue-specific and stress-responsive expression patterns of the VsPGs. Notably, VsPG48 and VsPG60 were highly expressed in the ventral sutures of pod-dehiscent varieties, whereas VsPG2 and VsPG41, among others, were co-upregulated under cold and aluminum stress. This study provides a foundation for further exploration of the biological functions of VsPGs. Full article
Show Figures

Figure 1

14 pages, 6146 KiB  
Article
FvWRKY75 Positively Regulates FvCRK5 to Enhance Salt Stress Tolerance
by Shan Li, Yi Jiang, Hanxiu Xie, Kangwei Wang, Kebang Yang, Qian Cao and Hao Xue
Plants 2025, 14(12), 1804; https://doi.org/10.3390/plants14121804 - 12 Jun 2025
Cited by 1 | Viewed by 573
Abstract
Strawberry (Fragaria × ananassa Duch.) is an important fruit worldwide whose growth, development, and productivity are threatened by salinity. The WRKY transcription factors (TFs) were reported to play an important role in regulating abiotic stresses response. However, research on their roles to [...] Read more.
Strawberry (Fragaria × ananassa Duch.) is an important fruit worldwide whose growth, development, and productivity are threatened by salinity. The WRKY transcription factors (TFs) were reported to play an important role in regulating abiotic stresses response. However, research on their roles to regulate salt stress tolerance in strawberry remains limited. In current study, the FvWRKY75 gene was isolated and characterized from the Ruegen strawberry, and induced by various stress treatment. The results showed that the FvWRKY75 transcription factor was a transcriptional activator and localized in the nucleus. Phenotypic and physiological analysis revealed that ectopic expression of FvWRKY75 in Arabidopsis improved salt tolerance by enhancing the antioxidant system activities, modulating ROS scavenging and upregulating stress-related genes. Y1H and dual luciferase assays revealed that FvWRKY75 can directly bind to the promoter of the FvCRK5 gene by recognizing the W-box element. Compared with the WT, ectopic expression of FvCRK5 gene in Arabidopsis enhanced salt tolerance characterized by the reduced ROS accumulation, higher chlorophyll content, lower MDA content, and enhanced SOD and POD activity. Herein, the FvWRKY75 gene acted as a positive regulator in salt stress resistance, at least in part, via the WRKY-CRK network to regulate the antioxidant enzyme defense system and stress-related genes to regulate salt stress tolerance in strawberry. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

19 pages, 7673 KiB  
Article
Overexpression of MdNRT2.4 Improved Low-Nitrogen Tolerance in Transgenic Tobacco Lines
by Junrong Li, Ke Liu, Chunqiong Shang, Qiandong Hou, Xiangmei Nie, Qinglong Dong, Dong Huang and Qian Wang
Horticulturae 2025, 11(6), 662; https://doi.org/10.3390/horticulturae11060662 - 10 Jun 2025
Viewed by 454
Abstract
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the [...] Read more.
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the potential function of MdNRT2.4 under low-nitrogen (N) stress by overexpressing it in tobacco. Compared with plants treated with a normal nitrogen level (5 mM), the MdNRT2.4 overexpression lines under low-N stress (0.25 mM) exhibited significantly greater plant height and width, as well as larger leaves and a higher leaf density, than wild-type plants, suggesting that the overexpression of MdNRT2.4 enhances the low-N tolerance of tobacco. Enhanced antioxidant enzyme activities in the MdNRT2.4 overexpression plant lines promoted the scavenging of reactive oxygen species, which reduced damage to their cell membranes. GUS staining of pMdNRT2.4::GUS-transformed Arabidopsis thaliana lines showed that MdNRT2.4 was expressed in the roots, vascular bundles, seeds in fruit pods, and young anther sites, suggesting that MdNRT2.4 mediates the transport of nitrate to these tissues, indicating that MdNRT2.4 might promote nitrate utilization in apple and improve its tolerance to low-N stress. Experiments using yeast one-hybrid and dual-luciferase assays revealed that MdbHLH3 binds to the MdNRT2.4 promoter and activates its expression. MdbHLH3 belongs to the basic helix–loop–helix (bHLH) transcription factor (TF). It is speculated that MdbHLH3 may interact with the promoter of MdNRT2.4 to regulate N metabolism in plants and enhance their low-N tolerance. This study establishes a theoretical framework for investigating the regulatory mechanisms of low-N responsive molecules in apple, while simultaneously providing valuable genetic resources for molecular breeding programs targeting low-N tolerance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

19 pages, 1822 KiB  
Article
Postharvest Application of Abscisic Acid and Methyl Jasmonate on Fruit Quality of ‘Red Zaosu’ Pear
by Yuhao Wu, Xin Zou, Shangyun Li, Chao Tang, Haoru Tang and Yong Zhang
Agronomy 2025, 15(6), 1263; https://doi.org/10.3390/agronomy15061263 - 22 May 2025
Viewed by 636
Abstract
Subsequent to the harvesting of ‘Red Zaosu’ pears, a swift decline in quality becomes evident. This is characterized by the discoloration of the peel, the softening of the flesh and metabolic alterations during storage. To elucidate the regulatory roles of phytohormone in fruit [...] Read more.
Subsequent to the harvesting of ‘Red Zaosu’ pears, a swift decline in quality becomes evident. This is characterized by the discoloration of the peel, the softening of the flesh and metabolic alterations during storage. To elucidate the regulatory roles of phytohormone in fruit preservation, postharvest pears were treated with 100 μmol/L abscisic acid (ABA), 100 μmol/L methyl jasmonate (MeJA) or their combination (ABA + MeJA). The results indicated that the phytohormone treatment groups exhibited varying degrees of efficacy in improving the postharvest quality of pear fruits. The combined treatments did not show synergistic effects, but rather inhibited anthocyanin accumulation and antioxidant enzyme (POD, CAT, APX, POD) activities and significantly reduced soluble solids, acidity and flavonoids, although peel brightness was maintained. ABA alone treatment promoted anthocyanin accumulation and peel coloring, but reduced fruit firmness, crispness, chewiness and soluble solids, enhanced total flavonoids and CAT activity and reduced malondialdehyde accumulation, while MeJA alone treatment inhibited anthocyanin synthesis and coloring, but also reduced firmness and soluble solids, and enhanced total flavonoids and CAT activity. The results indicate that ABA and MeJA exhibit differential regulatory effects on fruit quality when applied individually, and their combined application showed inferior effects compared to individual treatments. This finding provides a theoretical basis for optimizing combined phytohormone-preservation techniques. Full article
Show Figures

Figure 1

Back to TopTop