Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = forward osmosis membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5177 KiB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 428
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

15 pages, 1256 KiB  
Article
A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process
by Ping Xiao and Liang Liu
Membranes 2025, 15(8), 223; https://doi.org/10.3390/membranes15080223 - 25 Jul 2025
Viewed by 277
Abstract
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different [...] Read more.
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different CPs on the osmotic pressure drop across the membrane under different conditions by using the water transmission coefficient, ηWT, defined as the ratio of the measured water flux to the theoretical water flux. The results showed that ηWT decreased with an increase in the concentration gradient between the draw solution (DS) and the feed solution (FS) under different conditions. The proportions of osmotic pressure drop caused by dilutive internal concentration polarization (ICP) increased, while those caused by concentrative external concentration polarization (ECP) decreased, in different types of DSs in FO mode. Both ECP and ICP were found to be capable of reducing osmotic pressure. However, the internal CP had the dominant influence. To better understand the adverse effects of CP, using an organic FS provided greater insight than using deionized (DI) water as the FS. As the FS concentration increased, the water flux reduced, and the adverse effects of CP worsened. CaCl2 led to a greater reduction in water transfer efficiency than NaCl when used as the DS. In comparison to FO mode, pressure-retarded osmosis (PRO) mode led to greater pure water flux and flux decline. In FO mode, both the proportion of dilutive ICP and the ηWT decreased, while the proportion of concentrative ECP increased over time. However, in PRO mode, the proportions of dilutive ECP and concentrative ICP increased, and ηWT gradually decreased. Dilutive ICP had a significant negative effect on osmotic pressure in the former, while dilutive ECP was dominant in the latter. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 479
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
Metal Oxide-Modified PES Membranes for Efficient Separation of Oil-in-Water Emulsions and Trace Organic Compounds
by Jinze Li, Wensheng Yang, Yang Xu, Chengfeng Sun, Yingying Zhu and Geng Chen
Catalysts 2025, 15(6), 604; https://doi.org/10.3390/catal15060604 - 19 Jun 2025
Viewed by 512
Abstract
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to [...] Read more.
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to compare the effects of ZnO, Al2O3, and CuO nanoparticles on membrane structure and separation performance. The results demonstrated that the membrane modified with 0.04 g of ZnO nanoparticles achieved optimal synergy in terms of hydrophilicity, surface charge, and pore structure. The pure water flux increased from 5.48 L·m−2·h−1 for the pristine membrane to 18.5 L·m−2·h−1 for the ZnO-modified membrane, exhibiting a 237.5% increase in pure water flux compared to the pristine PES membrane, an oil rejection rate exceeding 97%, and over 95% rejection of typical negatively charged trace organic pollutants such as ibuprofen and tetracycline. Moreover, the ZnO-modified membrane showed excellent antifouling performance and structural stability in various organic solvent systems. This study not only optimized the interfacial chemistry and microstructure of the FO membrane but also enhanced pollutant repellence and the self-cleaning capability through increased hydrophilicity and surface negative charge density. These findings highlight the significant potential of ZnO modification for enhancing the overall performance of FO membranes and provide an effective strategy for developing high-performance, broadly applicable FO membranes for complex water purification. Full article
Show Figures

Graphical abstract

25 pages, 1879 KiB  
Review
Integration and Operational Application of Advanced Membrane Technologies in Military Water Purification Systems
by Mirela Volf, Silvia Morović and Krešimir Košutić
Separations 2025, 12(6), 162; https://doi.org/10.3390/separations12060162 - 16 Jun 2025
Viewed by 485
Abstract
Membrane technologies are used in the production of potable water and the treatment of wastewater in the military forces, providing the highest level of contaminant removal at an energy-efficient cost. This review examines the integration and application of membrane technologies, including reverse osmosis, [...] Read more.
Membrane technologies are used in the production of potable water and the treatment of wastewater in the military forces, providing the highest level of contaminant removal at an energy-efficient cost. This review examines the integration and application of membrane technologies, including reverse osmosis, nanofiltration, ultrafiltration, electrodialysis and advanced hybrid systems, in the treatment of wastewater generated at military bases, naval vessels and submarines. Special emphasis is placed on purification technologies for chemically, biologically and radiologically contaminated wastewater, as well as on the recycling and treatment of wastewater streams by mobile systems used in military applications. Given the specific requirements of complex military infrastructures, particularly in terms of energy efficiency, unit self-sufficiency and reduced dependence on logistical supply chains, this work analyses the latest advances in membrane technologies. Innovations such as nanographene membranes, biomimetic membranes, antifouling membrane systems and hybrid configurations of forward osmosis/reverse osmosis and electrodialysis/reverse electrodialysis offer unique potential for implementation in modular and mobile water treatment systems. In addition, the integration and operational use of these advanced technologies serve as a foundation for the development of autonomous military water supply strategies tailored to extreme operational conditions. The continued advancement and optimization of membrane technologies in military contexts is expected to significantly impact operational sustainability while minimizing environmental impact. Full article
Show Figures

Figure 1

21 pages, 2990 KiB  
Review
Geothermal Lithium Extraction Technology: Research Status and Prospects
by Bo Zhang, Feng Wang, Ronggang Wang, Yuhan Shang, Feng Li, Mengjiao Li and Tao Wang
Energies 2025, 18(12), 3146; https://doi.org/10.3390/en18123146 - 16 Jun 2025
Viewed by 571
Abstract
With the explosive growth in global lithium demand driven by the new energy industry, traditional lithium extraction methods face critical challenges such as resource scarcity, environmental pressure, and high energy consumption, necessitating sustainable alternatives. Under such circumstances, geothermal brine has emerged as a [...] Read more.
With the explosive growth in global lithium demand driven by the new energy industry, traditional lithium extraction methods face critical challenges such as resource scarcity, environmental pressure, and high energy consumption, necessitating sustainable alternatives. Under such circumstances, geothermal brine has emerged as a critical lithium resource, attracting significant attention due to advancements in efficient extraction technologies. This review establishes a comprehensive framework for analyzing geothermal lithium extraction technologies, with the following key contributions: an in-depth analysis of resource characteristics and development advantages, an innovative technical evaluation and performance comparison, and strategic pathways for technological synergy and industrial integration. This article reviews the global distribution and characteristics of lithium resources, analyzes the advantages and primary methods of geothermal lithium extraction, and examines key challenges such as high energy consumption and environmental impacts. Furthermore, future development directions are outlined. Currently, applicable technologies for geothermal lithium extraction include evaporation–crystallization, chemical precipitation, adsorption, solvent extraction, electrochemical methods, and membrane separation. Among these, membrane separation, particularly forward osmosis (FO), is identified as a pivotal research focus. The industrialization of geothermal lithium extraction and its integration with other industries are expected to shape future trends. This review not only provides critical insights and optimization strategies for geothermal lithium resource development, but also establishes a theoretical foundation for the green transition and sustainable utilization of resources in the global new energy industry. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

14 pages, 2703 KiB  
Article
Energy Efficient Forward Osmosis to Maximize Dewatering Rates
by Jongmin Jeon, Dongkeon Kim and Suhan Kim
Membranes 2025, 15(6), 171; https://doi.org/10.3390/membranes15060171 - 7 Jun 2025
Viewed by 1025
Abstract
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, [...] Read more.
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, conventional FO systems using series-connected modules suffer from progressive DS dilution and FS concentration, leading to a reduction in the osmotic driving force and thereby limiting the overall performance. To address this issue, we propose a novel hybrid FO module configuration in which the FS flows in series while the DS is split and distributed in parallel across moules. This configuration was evaluated using an experimentally validated FO module model and RO simulation tools. Under seawater (600 mM NaCl) as DS and brackish water (10 mM NaCl) as FS, a conventional three-stage FO module achieved an enrichment ratio of 2.5 with an energy consumption of 0.151 kWh/m3. In contrast, the proposed draw solution split distribution (DSSD) achieved an enrichment ratio of 12.5 at a reduced energy consumption of 0.137 kWh/m3. In comparison, a reverse osmosis system consuming 0.58 kWh/m3 achieved a similar enrichment ratio of 12.3. These results demonstrate the high energy efficiency and dewatering capacity of the proposed FO configuration, highlighting its potential for industrial applications in food processing, beverage production, pharmaceuticals and agriculture. Full article
Show Figures

Figure 1

20 pages, 2022 KiB  
Article
Prediction of Expected Fouling Time During Transmembrane Transition in Reverse Osmosis Systems
by Jozsef Lakner and Gabor Lakner
Membranes 2025, 15(6), 170; https://doi.org/10.3390/membranes15060170 - 6 Jun 2025
Viewed by 925
Abstract
Membrane filtration, including reverse osmosis filtration, is widely applied in water treatment worldwide, offering solutions to a broad range of separation challenges. However, due to the porous structure of membranes, they are prone to fouling, which reduces their efficiency and can eventually render [...] Read more.
Membrane filtration, including reverse osmosis filtration, is widely applied in water treatment worldwide, offering solutions to a broad range of separation challenges. However, due to the porous structure of membranes, they are prone to fouling, which reduces their efficiency and can eventually render the membranes incapable of functioning. In such cases, a systemic intervention becomes necessary, highlighting the importance of accurately predicting the expected fouling time. Various approaches for estimating fouling processes and times are well documented in the literature. However, a common limitation of these methods is that they typically assume constant and well-defined operating parameters over time. Under such stable conditions, the process can be described deterministically, and the fouling time can be predicted using straightforward extrapolation techniques. However, in industrial practice, process conditions often fluctuate due to multiple influencing factors, making fouling time a variable quantity. Therefore, it can be more appropriately treated as a random variable characterized by a mean value and standard deviation. Rather than predicting a precise fouling time, it is more relevant to define a probabilistic interval within which the fouling is expected to occur with a specified confidence level (e.g., 95%). The associated maintenance scheduling can then be optimized based on economic criteria. The probability-based model presented herein defines this interval based on operational measurements, thereby providing users with a time window during which maintenance should be planned. From this point forward, the exact timing of interventions becomes a matter of technical feasibility and economic optimization. Full article
Show Figures

Figure 1

46 pages, 4813 KiB  
Review
Overcoming the Limitations of Forward Osmosis and Membrane Distillation in Sustainable Hybrid Processes Managing the Water–Energy Nexus
by Muhammad Suleman, Basel Al-Rudainy and Frank Lipnizki
Membranes 2025, 15(6), 162; https://doi.org/10.3390/membranes15060162 - 26 May 2025
Cited by 1 | Viewed by 3812
Abstract
Energy-efficient and cost-effective water desalination systems can significantly replenish freshwater reserves without further stressing limited energy resources. Currently, the majority of the desalination systems are operated by non-renewable energy sources such as fossil fuel power plants. The viability of any desalination process depends [...] Read more.
Energy-efficient and cost-effective water desalination systems can significantly replenish freshwater reserves without further stressing limited energy resources. Currently, the majority of the desalination systems are operated by non-renewable energy sources such as fossil fuel power plants. The viability of any desalination process depends primarily on the type and amount of energy it utilizes and on the product recovery. In recent years, membrane distillation (MD) and forward osmosis (FO) have drawn the attention of the scientific community because of FO’s low energy demand and the potential of MD operation with low-grade heat or a renewable source like geothermal, wind, or solar energy. Despite the numerous potential advantages of MD and FO, there are still some limitations that negatively affect their performance associated with the water–energy nexus. This critical review focuses on the hybrid forward osmosis–membrane distillation (FO-MD) processes, emphasizing energy demand and product quality. It starts with exploring the limitations of MD and FO as standalone processes and their performance. Based on this, the importance of combining these technologies into an FO-MD hybrid process and the resulting strengths of it will be demonstrated. The promising applications of this hybrid process and their advantages will be also explored. Furthermore, the performance of FO-MD processes will be compared with other hybrid processes like FO–nanofiltration (FO-NF) and FO–reverse osmosis (FO-RO). It will be outlined how the FO-MD hybrid process could outperform other hybrid processes when utilizing a low-grade heat source. In conclusion, it will be shown that the FO-MD hybrid process can offer a sustainable solution to address water scarcity and efficiently manage the water–energy nexus. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 5698 KiB  
Review
Water–Energy Nexus: Membrane Engineering Towards a Sustainable Development
by Alessandra Criscuoli
Membranes 2025, 15(4), 98; https://doi.org/10.3390/membranes15040098 - 26 Mar 2025
Cited by 1 | Viewed by 877
Abstract
Sustainable development is linked to the achievement of several different objectives, as outlined by the 17 Sustainable Development Goals (SDGs) defined by the United Nations. Among them are the production of clean water and the combat of climate change, which is strictly linked [...] Read more.
Sustainable development is linked to the achievement of several different objectives, as outlined by the 17 Sustainable Development Goals (SDGs) defined by the United Nations. Among them are the production of clean water and the combat of climate change, which is strictly linked to the use of fossil fuels as a primary energy source and their related CO2 emissions. Water and energy are strongly interconnected. For instance, when processing water, energy is needed to pump, treat, heat/cool, and deliver water. Membrane operations for water treatment/desalination contribute to the recovery of purified/fresh water and reducing the environmental impact of waste streams. However, to be sustainable, water recovery must not be energy intensive. In this respect, this contribution aims to illustrate the state of the art and perspectives in desalination by reverse osmosis (RO), discussing the various approaches looking to improve the energy efficiency of this process. In particular, the coupling of RO with other membrane operations, like pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and forward osmosis (FO), as well as the osmotic-assisted reverse osmosis (OARO) system, are reported. Moreover, the possibility of coupling a membrane distillation (MD) unit to an RO one to increase the overall freshwater recovery factor and reduce the brine volumes that are disposed is also discussed. Specific emphasis is placed on the strategies being applied to reduce the MD thermal energy demand, so as to couple the production of the blue gold with the fight against climate change. Full article
Show Figures

Figure 1

21 pages, 846 KiB  
Review
Membrane Technologies for Sustainable Wastewater Treatment: Advances, Challenges, and Applications in Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) Systems
by Argyris Panagopoulos and Panagiotis Michailidis
Membranes 2025, 15(2), 64; https://doi.org/10.3390/membranes15020064 - 19 Feb 2025
Cited by 10 | Viewed by 2482
Abstract
As the demand for sustainable water and wastewater management continues to rise in both desalination and industrial sectors, there is been notable progress in developing Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) systems. Membrane technologies have become a key component of [...] Read more.
As the demand for sustainable water and wastewater management continues to rise in both desalination and industrial sectors, there is been notable progress in developing Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) systems. Membrane technologies have become a key component of these systems, providing effective solutions for removing contaminants and enabling the recovery of both water and valuable resources. This article explores recent advancements in the design and operation of ZLD and MLD systems, discussing their benefits, challenges, and how they fit into larger treatment processes. Emphasis is given to membrane-based processes, such as reverse osmosis (RO), membrane distillation (MD), and forward osmosis (FO), as well as hybrid configurations, and innovative membrane materials. These advancements are designed to address critical challenges like fouling, scaling, high energy demands, and high brine production. The article also explores exciting research directions aimed at enhancing the efficiency and durability of membrane technologies in ZLD and MLD systems, paving the way for new innovations in sustainable water management across various industries. Full article
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Assessing the Energy Footprint of Desalination Technologies and Minimal/Zero Liquid Discharge (MLD/ZLD) Systems for Sustainable Water Protection via Renewable Energy Integration
by Argyris Panagopoulos
Energies 2025, 18(4), 962; https://doi.org/10.3390/en18040962 - 17 Feb 2025
Cited by 8 | Viewed by 1850
Abstract
Water scarcity necessitates desalination technologies, yet their high energy demands and brine disposal challenges hinder sustainability. This research study evaluates the energy footprint and carbon emissions of thermal- and membrane-based desalination technologies, alongside Minimal/Zero Liquid Discharge (MLD/ZLD) frameworks, with a focus on renewable [...] Read more.
Water scarcity necessitates desalination technologies, yet their high energy demands and brine disposal challenges hinder sustainability. This research study evaluates the energy footprint and carbon emissions of thermal- and membrane-based desalination technologies, alongside Minimal/Zero Liquid Discharge (MLD/ZLD) frameworks, with a focus on renewable energy source (RES) integration. Data revealed stark contrasts: thermal-based technologies like osmotic evaporation (OE) and brine crystallizers (BCr) exhibit energy intensities of 80–100 kWh/m3 and 52–70 kWh/m3, respectively, with coal-powered carbon footprints reaching 72–100 kg CO2/m3. Membrane-based technologies, such as reverse osmosis (RO) (2–6 kWh/m3) and forward osmosis (FO) (0.8–13 kWh/m3), demonstrate lower emissions (1.8–11.7 kg CO2/m3 under coal). Transitioning to RES reduces emissions by 90–95%, exemplified by renewable energy-powered RO (0.1–0.3 kg CO2/m3). However, scalability barriers persist, including high capital costs, RES intermittency, and technological immaturity in emerging systems like osmotically assisted RO (OARO) and membrane distillation (MD). This research highlights RES-driven MLD/ZLD systems as pivotal for aligning desalination with global climate targets, urging innovations in energy storage, material robustness, and circular economy models to secure water resource resilience. Full article
Show Figures

Graphical abstract

28 pages, 1935 KiB  
Review
Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate
by Magdalena Zielińska and Katarzyna Bułkowska
Membranes 2025, 15(2), 45; https://doi.org/10.3390/membranes15020045 - 2 Feb 2025
Cited by 6 | Viewed by 2694
Abstract
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration [...] Read more.
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and new tools and techniques such as membrane contactors (MCs) with gas-permeable membranes (GPMs) and electrodialysis (ED). Key aspects that are analyzed include the nutrient concentration efficiency, integration with biological processes and strategies to mitigate challenges such as fouling, high energy requirements and scalability. In addition, innovative hybrid systems and pretreatment techniques are examined for their potential to improve the recovery rates and sustainability. The review also addresses the economic and technical barriers to the full-scale application of these technologies and identifies future research directions, such as improving the membrane materials and reducing the energy consumption. The comprehensive assessment of these processes highlights their contribution to sustainable nutrient management and bio-based fertilizer production. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 3896 KiB  
Review
Optimization of Forward Osmotic Dewatering on Resource Utilization of Microalgae: A Review
by Shengfei Zhang, Wenhui An, Runshan Li, Xu Zhang, Haiyu Ge and Hongbo Liu
Clean Technol. 2025, 7(1), 10; https://doi.org/10.3390/cleantechnol7010010 - 26 Jan 2025
Cited by 1 | Viewed by 1081
Abstract
Microalgae have attracted wide attention due to their extensive application potential. Dewatering is a necessary work for the application of microalgae, especially in biofuel production, where forward osmosis (FO) research is relatively advanced but still faces technical bottlenecks hindering large-scale commercialization. Based on [...] Read more.
Microalgae have attracted wide attention due to their extensive application potential. Dewatering is a necessary work for the application of microalgae, especially in biofuel production, where forward osmosis (FO) research is relatively advanced but still faces technical bottlenecks hindering large-scale commercialization. Based on the current research in recent years, the research progress in the causes and control of membrane fouling, the development of membrane materials and optimization of membrane structure, and the energy saving and efficiency of the process are reviewed in this paper. We found that different species of algae have direct effects on membrane fouling. Chlorella vulgaris has a low membrane fouling trend, but the mechanisms of fouling need further investigation. The material development and structure optimization of membranes are the main research methods to reduce membrane fouling, but there are still some defects, such as complicated preparation and low water flux, which are difficult to apply on a large scale. The research progress of reducing costs by using seawater, urine, fertilizer, etc. as new draw solutions (DS) is reviewed. At present, many aspects of FO microalgae dewatering technology are still not well understood, and future research should focus on scaling up the existing technologies. Full article
Show Figures

Figure 1

Back to TopTop