Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,222)

Search Parameters:
Keywords = food and wine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 988 KiB  
Article
Assessing the Applicability of a Partial Alcohol Reduction Method to the Fine Wine Analytical Composition of Pinot Gris
by Diána Ágnes Nyitrainé Sárdy, Péter Bodor-Pesti and Szabina Steckl
Foods 2025, 14(15), 2738; https://doi.org/10.3390/foods14152738 - 5 Aug 2025
Abstract
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster [...] Read more.
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster ripening and a higher sugar content, leading to a higher alcohol content during fermentation. The negative consequences are an imbalanced wine character and consumer reluctance, as lower alcoholic beverages are now in high demand. Over the last decade, several methods have been developed to handle this impact and reduce the alcohol content of wines. In this study, we used the MASTERMIND® REMOVE membrane-based dealcoholization system to reduce the alcohol concentration in of Pinot gris wines from 12.02% v/v to 10.69% v/v and to investigate the effect on analytical parameters in three steps (0.5%, 1%, and 1.5% reductions) along the treatment. To evaluate the impact of the partial alcohol reduction and identify correlations between the wine chemical parameters, data were analyzed with ANOVA, PCA, multivariate linear regression and cluster analysis. The results showed that except for the extract, sugar content and proline content, the treatment had a significant effect on the chemical parameters. Both free and total SO2 levels were significantly reduced as well as volatile acid, glycerol and succinic acid levels. It must be highlighted that some parameters were not differing significantly between the untreated and the final wine, while the change was statistically verified in the intermediate steps of the partial alcohol reduction. This was the case for example for n-Propanol, i-Amylalcohol, Acetaldehyde, and Ethyl acetate. The multivariate linear regression model explained 18.84% of the total variance, indicating a modest but meaningful relationship between the alcohol content and the investigated analytical parameters. Our results showed that even if the applied instrument significantly modified some of the wine chemical parameters, those changes would not influence significantly the wine sensory attributes. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 287
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

42 pages, 914 KiB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 572
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

18 pages, 1459 KiB  
Article
Observance of the Atlantic Diet in a Healthy Population from Galicia (NW Spain): A Comparative Study Using a New Scale-Based Procedure to Assess Adherence
by Inés Rivas-Fernández, Paula Roade-Pérez, Marta López-Alonso, Víctor Pereira-Lestayo, Rafael Monte-Secades, Rosa Argüeso-Armesto and Carlos Herrero-Latorre
Foods 2025, 14(15), 2614; https://doi.org/10.3390/foods14152614 - 25 Jul 2025
Viewed by 270
Abstract
The Atlantic Diet (AD) is based on traditional dietary patterns in Galicia (northwestern Spain) and northern Portugal and is known for its health benefits. The AD focuses on fresh, local, and seasonal foods, especially fish, seafood, vegetables, legumes, whole grains, fruit, olive oil, [...] Read more.
The Atlantic Diet (AD) is based on traditional dietary patterns in Galicia (northwestern Spain) and northern Portugal and is known for its health benefits. The AD focuses on fresh, local, and seasonal foods, especially fish, seafood, vegetables, legumes, whole grains, fruit, olive oil, and a moderate consumption of wine. However, it has received less attention from researchers than other dietary patterns. The present study had two main objectives: (i) to evaluate the dietary habits of a Galician population in relation to the AD and (ii) to create a numerical index to measure adherence to the AD. In 2022, a validated food frequency questionnaire was administered to 500 healthy adults living in Galicia. The data on participants’ dietary habits showed notable deviations from the ideal AD, especially regarding consumption of fruits, grains, and seafood. However, an adequate intake of legumes and nuts was observed, along with a reduction in the consumption of processed foods (except among younger participants) relative to that revealed in previous surveys. To assess adherence to the diet, statistical and chemometric analyses were applied, leading to the development of a new index: the Atlantic Diet Scale (ADS). The ADS was compared with three existing tools and proved to be a simple, flexible, and effective method for assessing dietary adherence based on optimal intake levels across food groups. When applied to dietary data, the ADS yielded adherence levels similar to two of the three traditional methods, with some differences relative to the third. These findings highlight the need for standardized evaluation tools, including clear definitions of food groups and consistent scoring systems, to better assess and promote adherence to the Atlantic Diet. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

19 pages, 1098 KiB  
Article
The Pyramid of Mineral Waters: A New Paradigm for Hydrogastronomy and the Combination of Food and Water
by Sergio Marini Grassetti and Betty Carlini
Gastronomy 2025, 3(3), 12; https://doi.org/10.3390/gastronomy3030012 - 23 Jul 2025
Viewed by 203
Abstract
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim [...] Read more.
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim to explore the relationships between the structure of water and food, flavors and aromas, revealing a world of previously unexplored nuances and tastes. This new approach is based on the analysis of the fixed residue of water, i.e., the amount of mineral salts dissolved in it. The fixed residue gives the water unique organoleptic characteristics, influencing the perception of flavors and sensations in the mouth. By analyzing the technical data sheet of mineral waters designed by us, it is possible to identify their main characteristics and combine them in a consistent way with various dishes, as proposed in the pyramid scheme. There are many possible combinations between natural mineral waters and foods, depending on numerous factors, including the type of water and the salts dissolved in it, the type of food, the cooking method, and the types of sauces and condiments present in the dish. To guide consumers in this fascinating universe, the figure of the water sommelier, or so-called hydro-sommelier, was born. As expert connoisseurs of natural mineral waters, they are able to recommend the ideal water for every occasion, maximizing the taste characteristics of the food served at the table. This study is completed with the construction of the Pyramid of Natural Mineral Waters, which relates the composition of water, specifically the salient characteristics related to dissolved minerals, with the respective food combinations recommended by us, in relation to the structure of both water and food. Full article
Show Figures

Figure 1

19 pages, 3910 KiB  
Article
Microbial Dynamics in a Musalais Wine Fermentation: A Metagenomic Study
by Yongzeng Pei, Mengrong Chen and Qiling Chen
Foods 2025, 14(15), 2570; https://doi.org/10.3390/foods14152570 - 22 Jul 2025
Viewed by 229
Abstract
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae [...] Read more.
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae was the dominant species, with its prevalence increasing from 97.35% in the early phase to 99.38% in the mid phase, before slightly decreasing to 98.79% in the late phase. Additionally, 24 non-Saccharomyces yeast species, including Hanseniaspora uvarum, Lachancea thermotolerans, and Torulaspora delbrueckii, were detected. Common species associated with other fermented foods, including Wickerhamomyces anomalus, Kluyveromyces marxianus, Saccharomyces eubayanus, and Zygosaccharomyces parabailii, were also identified. Notably, species not previously used in food fermentation, such as Saccharomyces jurei, Sodiomyces alkalinus, Vanrija pseudolonga, and Moesziomyces antarcticus, were also identified in this study. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KO) and Gene Ontology (GO) revealed notable variations in metabolic pathways and enriched functional genes. In addition, a total of 82 volatile compounds were detected in the final product, with higher alcohols (60.12%), esters (37.80%), and organic acids (1.80%) being the most prevalent. These results offer important insights into microbial interactions and their influence on Musalais wine quality, laying the groundwork for optimizing the fermentation process. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans
by Pankaj Maharjan, Aaron C. Elkins, Jason Brand, Samuel C. Catt, Simone J. Rochfort and Joe F. Panozzo
Agriculture 2025, 15(15), 1567; https://doi.org/10.3390/agriculture15151567 - 22 Jul 2025
Viewed by 292
Abstract
High concentrations of vicine and convicine (v-c) in faba beans can trigger favism in susceptible humans, posing a significant barrier to the broader adoption of faba beans as a food source. While plant breeding and various post-harvest processing methods have been adopted to [...] Read more.
High concentrations of vicine and convicine (v-c) in faba beans can trigger favism in susceptible humans, posing a significant barrier to the broader adoption of faba beans as a food source. While plant breeding and various post-harvest processing methods have been adopted to reduce v-c levels, there is limited understanding of how agronomic practices may assist in reducing v-c levels. This study investigated the effect of sowing time (TOS), soil type, and genotype on v-c levels in faba beans. Twelve faba bean genotypes were evaluated across multiple field sites by applying two sowing times and two diverse soil types. The v-c content was quantified using established chromatographic techniques. Genotypes were identified as the most major factor affecting v-c levels, with significant variation observed in mean vicine and convicine contents. Sowing time also had a significant impact (p < 0.01), with lower v-c levels observed in TOS 1 compared to TOS 2. This reduction may be due to a longer plant development period and extended seed desiccation in TOS 1. Soil conditions, likely linked to nutritional factors, significantly influenced vicine concentrations (p < 0.05) but did not influence convicine levels (p > 0.05). These findings highlight the importance of agronomy practices, such as optimal sowing time, soil nutrition, and moisture management, in minimizing v-c levels; the most effective strategy remains the development of low v-c genotypes combined with farming practices that naturally suppress v-c accumulation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 1009 KiB  
Article
Analysis of Five Biogenic Amines in Foods on the Chinese Market and Estimation of Acute Histamine Exposure from Fermented Foods in the Chinese Population
by Pei Cao, Mengmeng Gao, Dongmei Huang, Xiaomin Xu, Zhujun Liu, Qing Liu, Yang Lu, Feng Pan, Zhaoxin Li, Jinfang Sun, Lei Zhang and Pingping Zhou
Foods 2025, 14(14), 2550; https://doi.org/10.3390/foods14142550 - 21 Jul 2025
Viewed by 302
Abstract
Biogenic amines (BAs) are frequently detected in seafood products, wines, and fermented foods, and they pose potential risks to human health. The current study analyzed the concentrations of five common BAs in seafood, fermented food, and complementary food for infants and children (fish [...] Read more.
Biogenic amines (BAs) are frequently detected in seafood products, wines, and fermented foods, and they pose potential risks to human health. The current study analyzed the concentrations of five common BAs in seafood, fermented food, and complementary food for infants and children (fish sausage, canned complementary food for infants containing fish and shrimp ingredients, and fish floss) in China and estimated the acute health risks of histamine (HIS) from fermented foods in Chinese consumers. Among all the samples analyzed, HIS exhibited the highest detection rate (51.9%), followed by PUT (50.1%), and the detection rate of TRY (12.5%) was the lowest. The total average concentration of the five BAs across major food categories revealed that fermented bean curd had the highest total concentration of BAs (816.8 mg/kg), followed by shrimp (383.2 mg/kg) and cheese (328.0 mg/kg). In contrast, samples of complementary food for infants and children contained the lowest concentrations of BAs; the total average concentration of the five BAs was 12.0 mg/kg. The point assessment results showed that acute dietary exposure to HIS was highest from cheese (76.2 mg/d), followed by fermented bean products (74.5 mg/d). Furthermore, the probability assessment indicated that the probability of acute health risks from exposure to HIS was 0.44% for fermented bean product consumers and 0.014% for cheese consumers, respectively. Thus, for the general consumer, the probability of acute health risks caused by HIS in seafood and fermented foods is low. However, individuals with high consumption of cheese and fermented bean products may need to be concerned. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 589 KiB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 415
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

41 pages, 1636 KiB  
Review
Valorization of Olive Oil and Wine Industry Byproducts: Challenges and Opportunities in Sustainable Food Applications
by María Rodríguez-Pérez, Beatriz García-Béjar, Emma Burgos-Ramos and Paula Silva
Foods 2025, 14(14), 2475; https://doi.org/10.3390/foods14142475 - 15 Jul 2025
Viewed by 585
Abstract
The historical co-production of olive oil and wine has influenced the Mediterranean landscape and economy. Olive oil and wine production generates substantial organic waste, including olive pomace, grape pomace, and wastewater, which poses environmental challenges if untreated. These byproducts contain bioactive compounds, including [...] Read more.
The historical co-production of olive oil and wine has influenced the Mediterranean landscape and economy. Olive oil and wine production generates substantial organic waste, including olive pomace, grape pomace, and wastewater, which poses environmental challenges if untreated. These byproducts contain bioactive compounds, including polyphenols, such as hydroxytyrosol, resveratrol, and flavonoids, which possess antioxidant and anti-inflammatory properties, making them valuable for the development of functional foods and nutraceuticals. A combined waste valorization strategy can enhance bioactive compound recovery and align it with circular economic principles. The incorporation of olive oil and wine byproducts into food matrices, such as bread, pasta, dairy products, baked goods, chocolates, beverages, and processed items, has been explored to enhance antioxidant content, dietary fiber, and nutritional value. However, successful integration depends on maintaining acceptable sensory qualities and addressing the technical challenges in extraction, processing, and regulatory compliance. Realizing the potential benefits of dual valorization requires a systemic shift integrating scientific innovation, regulatory adaptability, and consumer engagement, guided by evidence, transparent communication, and inclusive governance to ensure that sustainability goals translate into environmental, economic, and public health outcomes. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Food Science)
Show Figures

Graphical abstract

23 pages, 1341 KiB  
Review
Microbial Fermentation Affects the Structure–Activity Relationship of Bioactive Compounds in Ginseng and Its Applications in Fermentation Products: A Review
by Juan Bai, Zixian Zhu, Wei Luo, Miran Jang, Beibei Pan, Ying Zhu, Jiayan Zhang, Yansheng Zhao and Xiang Xiao
Foods 2025, 14(14), 2473; https://doi.org/10.3390/foods14142473 - 15 Jul 2025
Viewed by 753
Abstract
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric [...] Read more.
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric analysis indicates that Panax species (Panax ginseng, Panax notoginseng) are primarily fermented using lactic acid bacteria and Aspergillus spp., with research predominantly focused on conversion efficiency to rare ginsenosides (Compound K, Rg3, and Rh2). Specifically, this review details the biotransformation pathways of these rare ginsenosides and the resultant bioactivity enhancements. Additionally, it summarizes the effects of other microorganisms, such as fungal fruiting bodies, on additional ginseng constituents like polysaccharides and polyphenols. Microbial fermentation has been successfully implemented in functional products, including ginseng vinegar, wine, and fermented milk. This review subsequently examines these applications, emphasizing fermentation’s potential to enhance product functionality. However, challenges remain in strain screening, process standardization, and analysis of multi-component synergistic mechanisms. In summary, this review synthesizes recent advancements in understanding the mechanisms of microbial fermentation on ginseng and its translational applications in functional foods and pharmaceuticals. Full article
Show Figures

Figure 1

23 pages, 2535 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 - 14 Jul 2025
Viewed by 798
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

31 pages, 799 KiB  
Article
Exploring Determinants of Mediterranean Lifestyle Adherence: Findings from the Multinational MEDIET4ALL e-Survey Across Ten Mediterranean and Neighboring Countries
by Achraf Ammar, Mohamed Ali Boujelbane, Atef Salem, Khaled Trabelsi, Bassem Bouaziz, Mohamed Kerkeni, Liwa Masmoudi, Juliane Heydenreich, Christiana Schallhorn, Gabriel Müller, Ayse Merve Uyar, Hadeel Ali Ghazzawi, Adam Tawfiq Amawi, Bekir Erhan Orhan, Giuseppe Grosso, Osama Abdelkarim, Mohamed Aly, Tarak Driss, Kais El Abed, Wassim Moalla, Piotr Zmijewski, Frédéric Debeaufort, Nasreddine Benbettaieb, Clément Poulain, Laura Reyes, Amparo Gamero, Marta Cuenca-Ortolá, Antonio Cilla, Nicola Francesca, Concetta Maria Messina, Enrico Viola, Björn Lorenzen, Stefania Filice, Aadil Bajoub, El-Mehdi Ajal, El Amine Ajal, Majdouline Obtel, Sadjia Lahiani, Taha Khaldi, Nafaa Souissi, Omar Boukhris, Waqar Husain, Evelyn Frias-Toral, Walid Mahdi, Hamdi Chtourou, Haitham Jahrami and Wolfgang I. Schöllhornadd Show full author list remove Hide full author list
Nutrients 2025, 17(14), 2280; https://doi.org/10.3390/nu17142280 - 10 Jul 2025
Viewed by 600
Abstract
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and [...] Read more.
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and tailored policy recommendations. As part of the MEDIET4ALL PRIMA project, this cross-sectional study aimed to comprehensively examine geo-demographic, socio-economic, psychological, behavioral, and barrier-related factors associated with and potentially contributing to MedLife adherence. Methods: Data were collected from 4010 participants aged 18 years and above across ten Mediterranean and neighboring countries using the multinational MEDIET4ALL e-survey, which included the validated MedLife index, along with various other questionnaires. Results: Results indicate that only 22% of respondents demonstrated high adherence to the Mediterranean lifestyle (MedLife), with significant variability observed across countries, age groups, education levels, and health statuses. Spain had the highest proportion of participants with high adherence (38%). Factors associated with significantly higher adherence rates include older age, living in the Mediterranean region, higher education levels, a greater awareness of MedLife principles, lower perceived barriers, normal BMI, better health status, and stable economic and marital conditions (p-values ranging from 0.04 to <0.001). Additionally, individuals with high MedLife adherence exhibited more socially and physically active lifestyles and experienced less psychological strain (p < 0.001). Regression analyses identified MedLife awareness as the strongest positive predictor of adherence (β = 0.206), followed by social participation (β = 0.194) and physical activity (β = 0.096). Additional positive contributors include life satisfaction, sleep quality, living in the Mediterranean region, age, and education (β ranging from 0.049 to 0.093). Conversely, factors that are negatively associated with adherence include sedentary behavior, living environment, and barriers such as low motivation, taste dislike, price unaffordability, limited availability, and the time-consuming nature of preparing Mediterranean food (MedFood; β ranging from −0.036 to −0.067). Conclusions: These findings indicate that fewer than one in four adults across Mediterranean and neighboring countries demonstrate high adherence to MedLife, supporting prior evidence of suboptimal adherence even within Mediterranean regions. This study identified a range of behavioral, socio-demographic, and environmental factors—both positive and negative predictors—that can help guide the design of targeted, culturally adapted interventions to promote MedLife behavior. Future research should incorporate objective measurements and longitudinal monitoring to better understand underlying mechanisms, establish causality, and develop sustainable strategies for enhancing MedLife adherence in diverse populations. Full article
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 921
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

33 pages, 2663 KiB  
Review
Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed
by Javier Echave, Antía G. Pereira, Ana O. S. Jorge, Paula Barciela, Rafael Nogueira-Marques, Ezgi N. Yuksek, María B. P. P. Oliveira, Lillian Barros and M. A. Prieto
Molecules 2025, 30(13), 2726; https://doi.org/10.3390/molecules30132726 - 25 Jun 2025
Viewed by 659
Abstract
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being [...] Read more.
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being well-known for its high content of various tannins, liable for the astringency of this fruit. Winemaking produces a great mass of by-products that are rich in tannins. Grape seed (GSd) and pulp waste, as well as leaves and stems (GSt), are rich in condensed tannins (CTs), while its skin (GSk) contains more flavonols and phenolic acids. CTs are polymers of flavan-3-ols, and their antioxidant and anti-inflammatory properties are well-accounted for, being the subject of extensive research for various applications. CTs from the diverse fractions of grapefruit and grapevine share similar structures given their composition but diverge in their degree of polymerization, which can modulate their chemical interactions and may be present at around 30 to 80 mg/g, depending on the grape fraction. Thus, this prominent agroindustrial by-product, which is usually managed as raw animal feed or further fermented for liquor production, can be valorized as a source of tannins with high added value. The present review addresses current knowledge on tannin diversity in grapefruit and grapevine by-products, assessing the differences in composition, quantity, and degree of polymerization. Current knowledge of their reported bioactivities will be discussed, linking them to their current and potential applications in food and feed. Full article
Show Figures

Figure 1

Back to TopTop