Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = foam-filled sandwiches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10448 KiB  
Article
Experimental Investigation into the Mechanical Performance of Foam-Filled 3D-Kagome Lattice Sandwich Panels
by Zhangbin Wu, Qiuyu Li, Chao Chai, Mao Chen, Zi Ye, Yunzhe Qiu, Canhui Li and Fuqiang Lai
Symmetry 2025, 17(4), 571; https://doi.org/10.3390/sym17040571 - 9 Apr 2025
Viewed by 515
Abstract
3D-Kagome lattice sandwich panels are mainly composed of upper and lower panels and a series of symmetrically and periodically arranged lattices, known for their excellent high specific stiffness, high specific strength, and energy absorption capacity. The inherent geometrical symmetry of the 3D-Kagome lattice [...] Read more.
3D-Kagome lattice sandwich panels are mainly composed of upper and lower panels and a series of symmetrically and periodically arranged lattices, known for their excellent high specific stiffness, high specific strength, and energy absorption capacity. The inherent geometrical symmetry of the 3D-Kagome lattice plays a crucial role in achieving superior mechanical stability and load distribution efficiency. This structural symmetry enhances the uniformity of stress distribution, making it highly suitable for automotive vibration suppression, such as battery protection for electric vehicles. In this study, a polyurethane foam-filled, symmetry-enhanced 3D-Kagome sandwich panel is designed following an optimization of the lattice structure. A novel fabrication method combining precision wire-cutting, interlocking core assembly, and in situ foam filling is employed to ensure a high degree of integration and manufacturability of the composite structure. Its mechanical properties and energy absorption characteristics are systematically evaluated through a series of experimental tests, including quasi-static compression, three-point bending, and low-speed impact. The study analyzes the effects of core height on the structural stiffness, strength, and energy absorption capacity under varying loads, elucidating the failure mechanisms inherent to the symmetrical lattice sandwich configurations. The results show that the foam-filled sandwich panels exhibit significant improvements in mechanical performance compared to the unfilled ones. Specifically, the panels with core heights of 15 mm, 20 mm, and 25 mm demonstrate increases in bending stiffness of 47.3%, 53.5%, and 51.3%, respectively, along with corresponding increases in bending strength of 45.5%, 53.1%, and 50.9%. The experimental findings provide a fundamental understanding of foam-filled lattice sandwich structures, offering insights into their structural optimization for lightweight energy-absorbing applications. This study establishes a foundation for the development of advanced crash-resistant materials for automotive, aerospace, and protective engineering applications. This work highlights the structural advantages and crashworthiness potential of foam-filled Kagome sandwich panels, providing a promising foundation for their application in electric vehicle battery enclosures, aerospace impact shields, and advanced protective systems. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Mechanics of Materials)
Show Figures

Figure 1

12 pages, 15543 KiB  
Article
Enhancing the Fatigue Properties of Rigid Polyurethane Foam by Dissipating the Mechanical Energy of Rubber Powder
by Jinlong Ju, Nana Yang, Yifei Zhang, Lei Yu, Guolu Ma and Wenhua Wu
Polymers 2025, 17(5), 705; https://doi.org/10.3390/polym17050705 - 6 Mar 2025
Viewed by 1131
Abstract
Rigid polyurethane-based foam is an ideal choice for sandwich-panel-filling materials due to its high strength, low thermal conductivity, high adhesion, and high chemical resistivity. Since sandwich panel materials often face cyclic mechanical loads during their service, it is significant to study the design [...] Read more.
Rigid polyurethane-based foam is an ideal choice for sandwich-panel-filling materials due to its high strength, low thermal conductivity, high adhesion, and high chemical resistivity. Since sandwich panel materials often face cyclic mechanical loads during their service, it is significant to study the design methods of fatigue-resistant rigid polyurethane foam and its fatigue failure mechanism to improve the performance of sandwich-panel-filling materials. In this study, a fatigue-resistant rubber powder/polyurethane composite material was prepared by introducing rubber powder, and its fatigue failure mechanism was systematically studied. The static mechanical test results indicate that with the introduction of 20% rubber powder, the compressive strength (at 85% strain) increased to 588 kPa. Additionally, thanks to the excellent energy absorption and dissipation properties of rubber powder, it can effectively dissipate mechanical energy during cyclic loading. The fatigue test results show that after the introduction of rubber powder, the fatigue life of the polyurethane foam material increases from 10,258 cycles (for PU, stress ratio 0.6) to 45,987 cycles (for 20R-PU, stress ratio 0.6). This study not only proves the fact that rubber powder can improve the fatigue performance of foam materials but also provides a potential option for the design of high-performance filling materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

17 pages, 5282 KiB  
Article
Mechanical Characteristics of Sandwich Structures with 3D-Printed Bio-Inspired Gyroid Structure Core and Carbon Fiber-Reinforced Polymer Laminate Face-Sheet
by Harri Junaedi, Marwa A. Abd El-baky, Mahmoud M. Awd Allah and Tamer A. Sebaey
Polymers 2024, 16(12), 1698; https://doi.org/10.3390/polym16121698 - 14 Jun 2024
Cited by 26 | Viewed by 3115
Abstract
The gyroid structure is a bio-inspired structure that was discovered in butterfly wings. The geometric design of the gyroid structure in butterfly wings offers a unique combination of strength and flexibility. This study investigated sandwich panels consisting of a 3D-printed gyroid structure core [...] Read more.
The gyroid structure is a bio-inspired structure that was discovered in butterfly wings. The geometric design of the gyroid structure in butterfly wings offers a unique combination of strength and flexibility. This study investigated sandwich panels consisting of a 3D-printed gyroid structure core and carbon fiber-reinforced polymer (CFRP) facing skin. A filament fused fabrication 3D printer machine was used to print the gyroid cores with three different relative densities, namely 10%, 15%, and 20%. Polylactic acid (PLA) was used as the printing material for the gyroid. The gyroid structure was then sandwiched and joined by an epoxy resin between CFRP laminates. Polyurethane foam (PUF) was filled into the gyroid core to fill the cavity on the core for another set of samples. Flexural and compression tests were performed on the samples to investigate the mechanical behavior of the sandwiches. Moreover, the two-parameter Weibull distribution was used to evaluate the results statistically. As a result, the sandwich-specific facing stress and core shear strength from the three-point bending test of the composites increased with the increase in sandwich density. Core density controls the flexural characteristics of the sandwich. Adding PUF improves the deflection at the maximum stress and the sustained load after fracture of the sandwich. Compression strength, modulus, and energy absorbed by gyroid core sandwiches and their specific properties are higher than the PUF-filled gyroid core sandwiches at equal sandwich density. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymers, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2901 KiB  
Article
Bio-Based Tannin Foams: Comparing Their Physical and Thermal Response to Polyurethane Foams in Lightweight Sandwich Panels
by Marlon Bender Bueno Rodrigues, Ronan Côrrea, Pedro Henrique G. De Cademartori, Ana C. R. Ribeiro, Rodrigo Coldebella, Rafael A. Delucis, Nayara Lunkes and André L. Missio
Compounds 2024, 4(1), 1-16; https://doi.org/10.3390/compounds4010001 - 25 Dec 2023
Cited by 7 | Viewed by 2504
Abstract
Rigid polyurethane foams are the better-performing material for the most common insulation purposes, like sandwich panels. Nevertheless, they are highly flammable materials, release toxic gases, and are manufactured from fossil sources. As an alternative, tannin foams are bio-based materials that work as innovative [...] Read more.
Rigid polyurethane foams are the better-performing material for the most common insulation purposes, like sandwich panels. Nevertheless, they are highly flammable materials, release toxic gases, and are manufactured from fossil sources. As an alternative, tannin foams are bio-based materials that work as innovative alternatives thanks to their great fire resistance, as well as lower smoke and harmful gases emissions. In the present study, lab-made foams of both materials were compared through morphology, thermal and fire degradation, mechanical properties, and water affinity in order to fill the technological gap between them and their related sandwich panels. It was observed that tannin foams are still relatively inhomogeneous (since formaldehyde was not used) and present a high affinity for water but have higher thermal and fire resistance. The flat compression strength of the polyurethane sandwiches was greater than that of tannin sandwiches (3.61 and 3.09 MPa, respectively) thanks, mainly, to the crosslinking degree difference between the resins. Also, tannin foams presented a lower weight loss (−70.684% lower weight loss in flammability tests than polyurethane foams) and the ability to self-extinguish the flame. Therefore, sandwich panels with tannin foam cores could be successful materials in areas that require protection against fire, such as the building engineering and automotive industries. Full article
Show Figures

Figure 1

26 pages, 12118 KiB  
Article
Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores
by Pengbo Su, Bin Han, Yiming Wang, Hui Wang, Bo Gao and Tian Jian Lu
Materials 2023, 16(19), 6605; https://doi.org/10.3390/ma16196605 - 9 Oct 2023
Viewed by 1518
Abstract
Inspired by material hybrid design, novel hybrid sandwich shells were developed by filling a corrugated cylindrical structure with aluminum foam to achieve higher energy absorption performance. The crushing behavior of the foam-filled corrugated sandwich cylindrical shells (FFCSCSs) was investigated using theoretical and numerical [...] Read more.
Inspired by material hybrid design, novel hybrid sandwich shells were developed by filling a corrugated cylindrical structure with aluminum foam to achieve higher energy absorption performance. The crushing behavior of the foam-filled corrugated sandwich cylindrical shells (FFCSCSs) was investigated using theoretical and numerical methods. Numerical results revealed a significant enhancement in the energy absorption of FFCSCSs under axial compression, showcasing a maximum specific energy absorption of 60 kJ/kg. The coupling strengthening effect is highly pronounced, with a maximum value of F¯c/F¯ reaching up to 40%. The mechanism underlying this phenomenon can be approached from two perspectives. Firstly, the intrusion of folds into the foam insertions allows for more effective foam compression, maximizing its energy absorption capacity. Secondly, foam causes the folds to bend upwards, intensifying the mutual compression between the folds. This coupling mechanism was further investigated with a focus on analyzing the influence of parameters such as the relative density of the foam, the wall thickness of the sandwich shell, and the material properties. Moreover, a theoretical model was developed to accurately predict the mean crushing force of the FFCSCSs. Based on this model, the influence of various variables on the crushing behavior of the structure was thoroughly investigated through parametric studies. Full article
Show Figures

Figure 1

15 pages, 6465 KiB  
Article
Simulation Analysis of Acoustic Radiation from Force Excitation of Foam-Filled Stiffened Sandwich Panels
by Bin Li, Ning Wang, Haoyang Ding, Zilai Zheng, Wenjian Kuang and Langlang Wei
Appl. Sci. 2023, 13(19), 10733; https://doi.org/10.3390/app131910733 - 27 Sep 2023
Viewed by 1387
Abstract
To tackle the influence of foam filling on the sound radiation performance of reinforced sandwich panels, this study employs a combined approach of experiments and simulations to investigate the factors that impact the sound radiation performance in the 1–2000 Hz mid–low frequency range. [...] Read more.
To tackle the influence of foam filling on the sound radiation performance of reinforced sandwich panels, this study employs a combined approach of experiments and simulations to investigate the factors that impact the sound radiation performance in the 1–2000 Hz mid–low frequency range. The aim is to determine how the parameters of foam impact the sound radiation performance of foam-filled reinforced sandwich panels. The results indicate that changes in the acoustic parameters of the foam have a weak effect on the frequency corresponding to the peak sound radiation power and the non-peak frequency range sound radiation performance of the sandwich panel, while significantly impacting the peak sound radiation power. Among them, porosity has the least influence on sound radiation performance, whereas static flow resistivity and tortuosity factors have a greater influence on peak sound radiation performance. The reduction in thermal characteristic length and the increase in static flow resistivity can both enhance the sound radiation performance of the panel, while the impact of tortuosity factor and viscous characteristic length on panel sound radiation performance depends on the frequency range. Full article
Show Figures

Figure 1

18 pages, 5056 KiB  
Article
Thermo-Mechanical Behavior of Green Sandwich Structures for Building and Construction Applications
by Forhad Hossain, Md Arifuzzaman, Md Shariful Islam and Md Mainul Islam
Processes 2023, 11(8), 2456; https://doi.org/10.3390/pr11082456 - 15 Aug 2023
Cited by 4 | Viewed by 2720
Abstract
In this work, three different types of sandwich structures were manufactured, each using a Formica sheet (a paper-based sheet) as the skin and perlite/sodium silicate foam as the core, with or without a paper honeycomb. The sandwich structures were fabricated by attaching the [...] Read more.
In this work, three different types of sandwich structures were manufactured, each using a Formica sheet (a paper-based sheet) as the skin and perlite/sodium silicate foam as the core, with or without a paper honeycomb. The sandwich structures were fabricated by attaching the Formica sheets on both sides of a paper honeycomb core panel, a perlite/sodium silicate foam core panel, and a perlite/sodium silicate foam-filled honeycomb core panel. The flexural characteristics were studied by a three-point bending test and the thermal conductivity was measured using Lee’s thermal conductivity apparatus. The results demonstrated a significant improvement in flexural properties, including core shear stress, facing stress, bending stress, and energy absorption, when incorporating the paper honeycomb reinforcement. The thermal conductivity and flexural properties of the paper honeycomb reinforced and unreinforced perlite/sodium silicate foam-based sandwich panels were found to be very compatible with existing building materials described in the literature that are used for similar applications. The failure investigation revealed that the sandwiches with paper honeycomb failed prematurely only due to core buckling, while the foam-filled honeycomb core-based sandwiches were able to sustain higher loads while exhibiting material failures such as core shear failure, skin rapture, and delamination. It was found that the foam-filled paper honeycomb sandwich structures can withstand higher bending loads than the foam core-based sandwich structure or the paper-honeycomb-based sandwich structure. These developed sandwiches offer potential as green materials due to the characteristics of their constituent materials and they can provide valuable applications in the thermal insulation of buildings. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 9433 KiB  
Article
The Out-Of-Plane Compression Behavior of In Situ Ethylene Vinyl Acetate (EVA)-Foam-Filled Aluminum Honeycomb Sandwich Structures
by Tuğba Selcen Atalay Kalsen, Hakan Burak Karadağ and Yasin Ramazan Eker
Materials 2023, 16(15), 5350; https://doi.org/10.3390/ma16155350 - 30 Jul 2023
Cited by 5 | Viewed by 2280
Abstract
In this study, the mechanical behavior of aluminum honeycomb (AHC) sandwich structures filled with ethylene vinyl acetate copolymer (EVA) foam in situ under out-of-plane compression loading was investigated experimentally. Both non-filled and EVA-foam-filled sandwich specimens with three different AHC core cell sizes (5.20, [...] Read more.
In this study, the mechanical behavior of aluminum honeycomb (AHC) sandwich structures filled with ethylene vinyl acetate copolymer (EVA) foam in situ under out-of-plane compression loading was investigated experimentally. Both non-filled and EVA-foam-filled sandwich specimens with three different AHC core cell sizes (5.20, 6.78, and 8.66 mm) were studied to correlate the foam-filling effect with a key structural parameter. The results showed that compression characteristic properties such as peak stress, plateau stress, and absorbed energy per unit volume of the sandwich structure increased with EVA foam filling. The structure showed high recoverability when the compression loading was removed due to the viscoelastic nature of EVA foam. Cored EVA sandwich with 8.66 mm AHC cell size was recovered at 44% of the original thickness. This result promises groundbreaking applications such as impact-resistant and self-healing structures. The microstructures were also observed using scanning electron microscopy (SEM) to investigate the failure and the recoverability mechanisms. Full article
(This article belongs to the Special Issue Experimental and Numerical Analysis of Sandwich Structures)
Show Figures

Figure 1

19 pages, 9554 KiB  
Article
Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring
by Antoine Poirot, Nacera Bedrici, Jean-Christophe Walrick and Michel Arrigoni
Sensors 2023, 23(11), 5161; https://doi.org/10.3390/s23115161 - 29 May 2023
Cited by 2 | Viewed by 2452
Abstract
Smart flexible materials with piezoresistive property are increasingly used in the field of sensors. When embedded in structures, they would allow for in situ structural health monitoring and damage assessment of impact loading, such as crash, bird strikes and ballistic impacts; however, this [...] Read more.
Smart flexible materials with piezoresistive property are increasingly used in the field of sensors. When embedded in structures, they would allow for in situ structural health monitoring and damage assessment of impact loading, such as crash, bird strikes and ballistic impacts; however, this could not be achieved without a deep characterization of the relation between piezoresistivity and mechanical behavior. The aim of this paper is to study the potential use of the piezoresistivity effect of a conductive foam made of a flexible polyurethane matrix filled with activated carbon for integrated structural health monitoring (SHM) and low-energy impact detection. To do so, polyurethane foam filled with activated carbon, namely PUF-AC, is tested under quasi-static compressions and under a dynamic mechanical analyzer (DMA) with in situ measurements of its electrical resistance. A new relation is proposed for describing the evolution of the resistivity versus strain rate showing that a link exists between electrical sensitivity and viscoelasticity. In addition, a first demonstrative experiment of feasibility of an SHM application using piezoresistive foam embedded in a composite sandwich structure is realized by a low-energy impact (2 J) test. Full article
(This article belongs to the Special Issue Smart Composites for Structural Health Monitoring)
Show Figures

Graphical abstract

20 pages, 11042 KiB  
Article
Experimental Investigation on the Low-Velocity Impact Response of Tandem Nomex Honeycomb Sandwich Panels
by Jinbo Fan, Penghui Li, Weiqi Guo, Xiuguo Zhao, Chen Su and Xinxi Xu
Polymers 2023, 15(2), 456; https://doi.org/10.3390/polym15020456 - 15 Jan 2023
Cited by 17 | Viewed by 3366
Abstract
Sandwich panels are often subjected to unpredictable impacts and crashes in applications. The core type and impactor shape affect their impact response. This paper investigates the responses of five tandem Nomex honeycomb sandwich panels with different core-types under low-velocity-impact conditions with flat and [...] Read more.
Sandwich panels are often subjected to unpredictable impacts and crashes in applications. The core type and impactor shape affect their impact response. This paper investigates the responses of five tandem Nomex honeycomb sandwich panels with different core-types under low-velocity-impact conditions with flat and hemispherical impactors. From the force response and impact displacement, gradient-tandem and foam-filled structures can improve the impact resistance of sandwich panels. Compared with the single-layer sandwich panel, the first peak of contact force of the foam-gradient-filled tandem honeycomb sandwich panels increased by 34.84%, and maximum impact displacement reduced by 50.98%. The resistance of gradient-tandem Nomex honeycomb sandwich panels under low-velocity impact outperformed uniform-tandem structures. Foam-filled structures change the impact responses of the tandem sandwich panels. Impact damage with a flat impactor was more severe than the hemispherical impactor. The experimental results are helpful in the design of tandem Nomex honeycomb sandwich panels. Full article
(This article belongs to the Special Issue Dynamic Behavior of Polymer Composite Materials and Structures)
Show Figures

Graphical abstract

15 pages, 2772 KiB  
Article
The Mechanical Behavior and Enhancement Mechanism of Short Carbon Fiber Reinforced AFS Interface
by Chang Yan, Jiaxu Cai, Kun Xiang, Jinfeng Zhao, Wanqing Lei and Changqing Fang
Materials 2022, 15(24), 9012; https://doi.org/10.3390/ma15249012 - 16 Dec 2022
Cited by 3 | Viewed by 1853
Abstract
The aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the [...] Read more.
The aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the most widely used methods to produce AFS due to its general applicability, simple process, and low cost, however, the bonding interface is known as the weak link and may cause a serious accident. To overcome the shortcomings of a bonded AFS interface, short carbon fiber as a reinforcement phase was introduced to epoxy resin to reinforce the interface adhesion strength of AFS. Single lap shear tests and three-point bending tests were conducted to study the mechanical behavior of the reinforced interface and AFS, respectively. The failure mechanism was studied through a macro- and microanalysis. The result showed that after the reinforcement of carbon fiber, the tangential shear strength of the interface increased by 73.65%. The effective displacement of AFS prepared by the reinforced epoxy resin is 125.95% more than the AFS prepared by the unreinforced epoxy resin. The flexure behavior of the reinforced AFS can be compared with AFS made through a metallurgical method. Three categories of reinforcement mechanisms were discovered: (a) the pull off and pull mechanism: when the modified carbon fiber performed as the bridge, the bonding strength improved because of the pull off and pull out of fibers; (b) adhesion effect: the carbon fiber gathered in the hole edge resulted in epoxy resins being gathered in there too, which increased the effective bonding area of the interface; (c) mechanical self-locking effect: the carbon fiber enhanced the adhesive filling performance of aluminum foam holes, which improved the mechanical self-locking effect of the bonding interface. Full article
(This article belongs to the Special Issue Green & Intelligent Printing or Packaging Materials in Light Industry)
Show Figures

Figure 1

12 pages, 5026 KiB  
Article
Vibrational Characteristics of a Foam-Filled Short Basalt Fiber Reinforced Epoxy Resin Composite Beetle Elytron Plate
by Jinxiang Chen, Shengchen Du, Chaochao He and Nanxing Zhu
Materials 2022, 15(21), 7748; https://doi.org/10.3390/ma15217748 - 3 Nov 2022
Cited by 4 | Viewed by 1883
Abstract
The vibrational properties and mechanism of a foam-filling short basalt fiber reinforced epoxy resin composite beetle elytron plate (EBEPfc) were studied by experiments and the finite element (FE) method in this paper. The experimental results showed that the natural frequencies of [...] Read more.
The vibrational properties and mechanism of a foam-filling short basalt fiber reinforced epoxy resin composite beetle elytron plate (EBEPfc) were studied by experiments and the finite element (FE) method in this paper. The experimental results showed that the natural frequencies of the first two modes of the EBEPfc were very close to those of a foam-filling short basalt fiber reinforced epoxy resin composite honeycomb plate (HPfc), while the vibrational response of the EBEPfc was weaker than that of the HPfc, and the damping ratio was improved; the improvement of the second mode was significant. Therefore, the EBEPfc had a better vibration reduction performance and could directly replace the HPfc in engineering applications. The FE results showed that foam filling enhanced the shear stiffness of the whole core structure, and had a more obvious effect on the shear stiffness of the HPfc. Meanwhile, it particularly reduced the shear force proportions and contributed to the protection of the skin and core skeleton. The mechanisms of the vibrational characteristics of these two types of sandwich plates were explored from the perspective of the equivalent cross-sectional area, shear stiffness, shear strain energy per unit volume and friction. These results provide a valuable reference for the promotion and application of EBEPfc in the fields of vibration reduction and seismic resistance. Full article
Show Figures

Figure 1

15 pages, 4100 KiB  
Article
Compression Properties and Fabrication of Closed-Cell Metal Matrix Syntactic Foams Al2O3hs/AZ91D
by Changyun Li, Erkuo Yang, Ling Tang, Yang Li and Lei Xu
Materials 2022, 15(19), 6873; https://doi.org/10.3390/ma15196873 - 3 Oct 2022
Cited by 2 | Viewed by 2104
Abstract
Closed-cell metal syntactic foam is a new material consisting of hollow spheres embedded in metal matrix syntactic foams. These foams have good physical and mechanical properties and are increasingly used worldwide in industrial and high-tech fields. Magnesium matrix syntactic foams containing hollow Al [...] Read more.
Closed-cell metal syntactic foam is a new material consisting of hollow spheres embedded in metal matrix syntactic foams. These foams have good physical and mechanical properties and are increasingly used worldwide in industrial and high-tech fields. Magnesium matrix syntactic foams containing hollow Al2O3 spheres ((Al2O3hs)/AZ91D) were successfully fabricated by hot press sintering at different temperatures. The fabrication of Al2O3hs/AZ91D and the effect of sintering temperature on the microstructure and properties are reported in this paper. Additionally, sandwiched magnesium matrix syntactic foams were prepared by placing magnesium plates on both sides of the syntactic foam. Some Al2O3hs particles became filled with matrix particles during preparation. Thus, the actual density was greater than the theoretically calculated value and increases with increasing sintering temperature. Above 723 K, a brittle phase MgAl2O4 formed in Al2O3hs/AZ91D. The quasistatic and dynamic compressive strengths of Al2O3hs/AZ91D first increased and then decreased with increasing sintering temperature, and the maximums were 162 MPa and 167.87 MPa, respectively. Thus, this paper reports a new strategy for the controlled preparation of metal matrix syntactic foams with predetermined porosity. The results show that this strategy improved the performance of lightweight and high-strength syntactic foam materials and shows potential for further research. Full article
(This article belongs to the Special Issue New Advances in Nanomaterials)
Show Figures

Graphical abstract

19 pages, 7854 KiB  
Review
Recent Advances in Woven Spacer Fabric Sandwich Composite Panels: A Review
by Yeran Wang, Junmei Liu, Lixia Jia and Zhenhong Chen
Polymers 2022, 14(17), 3537; https://doi.org/10.3390/polym14173537 - 29 Aug 2022
Cited by 14 | Viewed by 3442
Abstract
Because of the advantageous characteristics of strong integrity, lightweight, high performance, and various designs, woven spacer fabric (WSF) and its composite are extensively used in construction, traffic, and aerospace, among other fields. This paper first describes the WSF structure, including core yarns and [...] Read more.
Because of the advantageous characteristics of strong integrity, lightweight, high performance, and various designs, woven spacer fabric (WSF) and its composite are extensively used in construction, traffic, and aerospace, among other fields. This paper first describes the WSF structure, including core yarns and cross-linking, and then discusses the influence of the processing parameters, among angle of the wall decisive the failure mode on the plate properties. Moreover, we summarize the molding and filling technology of WSF composite sandwich panels and discuss the process order, resulting in a significant effect on the stiffness of the sandwich composite plate; the current processing is mostly hand lay-up technology. In addition, we introduce the core and matrix material of the sandwich composite plate, which are mainly polyurethane (PU) foam and epoxy resin (70% of matrix material), respectively. Finally, the mechanical properties of WSF composite sandwich panels are summarized, including bending, compression, impact, shear, and peel properties. Factors influencing the mechanical properties are analyzed to provide a theoretical basis for future plate design and preparation. Full article
(This article belongs to the Special Issue Polymer-Based Three-Dimensional (3D) Textile Composites)
Show Figures

Figure 1

15 pages, 5048 KiB  
Article
Resin Flow Analysis for the Foam Core Sandwich Spoiler by Vacuum-Assisted Resin Injection Process
by Chao Yan, Yishen Li, Xia Su, Qi Liu, Yuning Wang, Kai Wu and Xiaoqing Wu
Materials 2022, 15(15), 5279; https://doi.org/10.3390/ma15155279 - 30 Jul 2022
Cited by 5 | Viewed by 2558
Abstract
This article presents the numerical analysis and experimental investigation for the manufacturing of a foam core sandwich spoiler by vacuum-assisted resin injection (VARI) process. To find an injection scheme that guarantees both a good impregnation of the preform and a filling time compatible [...] Read more.
This article presents the numerical analysis and experimental investigation for the manufacturing of a foam core sandwich spoiler by vacuum-assisted resin injection (VARI) process. To find an injection scheme that guarantees both a good impregnation of the preform and a filling time compatible with the process window, the finite element model (FEM) was applied to analyze the effect of different injection schemes on the resin flow front patterns. Based on the obtained results, two optimal injection schemes are selected to form the spoiler structure. The experimental results show that the best molding quality can be achieved from the thick-end injection with a thin-end exit scheme. The comparison between simulation and experimental results shows that the overall deviation of the numerical analysis on resin flow time is 15.9%. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop