Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = flux weakening control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4387 KB  
Article
Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
by Pengfei Chi, Guoshu Huang, Liang Liu, Jian Yang, Ning Wang, Xueting Jing, Junjun Zhou, Ningbo Bai and Hui Ding
Energies 2025, 18(21), 5610; https://doi.org/10.3390/en18215610 - 25 Oct 2025
Viewed by 254
Abstract
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling [...] Read more.
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 3174 KB  
Article
A Robust Optimal Control Strategy for PMSM Based on VGPDO and Actor-Critic Neural Network Against Flux Weakening and Mismatched Load Torque
by Yangyu Niu and Haibin Shi
Mathematics 2025, 13(21), 3387; https://doi.org/10.3390/math13213387 - 24 Oct 2025
Viewed by 427
Abstract
In this paper, a novel robust optimal control strategy is proposed for permanent magnet synchronous motors (PMSMs), simultaneously addressing two critical challenges in speed regulation: flux linkage degradation during long-term operation and abrupt load torque variations. The robust optimal control strategy is implemented [...] Read more.
In this paper, a novel robust optimal control strategy is proposed for permanent magnet synchronous motors (PMSMs), simultaneously addressing two critical challenges in speed regulation: flux linkage degradation during long-term operation and abrupt load torque variations. The robust optimal control strategy is implemented through a combination of feedforward control and feedback control. A novel Variable-Gain Proportional Disturbance Observer (VGPDO) is proposed to simultaneously estimate time-varying flux linkage and torque disturbances in PMSM systems. The estimated disturbances are then compensated via a feedforward control loop, significantly improving the system’s robustness against parameter variations and external load changes. An optimal controller based on an actor-critic neural network provides feedback for optimal control performance. The uniform ultimate boundedness (UUB) of the proposed strategy is proved through Lyapunov stability analysis, and comprehensive simulation studies demonstrate the efficacy of both the proposed VGPDO and the proposed robust optimal control strategy. Full article
Show Figures

Figure 1

46 pages, 4133 KB  
Review
Flux-Weakening Control Methods for Permanent Magnet Synchronous Machines in Electric Vehicles at High Speed
by Samer Alwaqfi, Mohamad Alzayed and Hicham Chaoui
Electronics 2025, 14(19), 3779; https://doi.org/10.3390/electronics14193779 - 24 Sep 2025
Viewed by 2964
Abstract
Permanent magnet synchronous motors (PMSMs) are widely favored by manufacturers for use in electric vehicles (EVs) because of their many benefits, which include high power density at high speeds, ruggedness, potential for high efficiency, and reduced control complexity. However, since the Back Electromotive [...] Read more.
Permanent magnet synchronous motors (PMSMs) are widely favored by manufacturers for use in electric vehicles (EVs) because of their many benefits, which include high power density at high speeds, ruggedness, potential for high efficiency, and reduced control complexity. However, since the Back Electromotive Force (EMF) increases proportionally with the motor’s rotational speed, it must be carefully controlled at high speeds. Flux-weakening (FW) control is required to avoid excessive electromagnetic flux beyond the power source and inverter’s voltage restrictions. This paper aims to compare various FW control strategies and analyze their effectiveness in maximizing the speed of PMSMs in EV applications while ensuring stable and reliable performance. Various FW approaches, such as voltage-based control, current-based control, and advanced predictive control methods, are examined to determine how each method balances speed enhancement with torque output and efficiency. In addition, other control strategies are crucial for optimizing the performance of PMSMs in electric vehicles. Among the most popular methods for controlling torque and speed in PMSMs are Field-Oriented Control (FOC), Direct Torque Control (DTC), and Vector Current Control (VCC). Each control technique has advantages and is frequently cited in the literature as a crucial instrument for improving EV motor control. This article provides a comprehensive evaluation of FW methods, highlighting their respective advantages and disadvantages by synthesizing the findings of numerous studies. In addition to outlining future research directions in FW control for EV applications, this study provides essential insights and valuable suggestions to help select FW control techniques for various PMSM types and operating conditions. Full article
(This article belongs to the Special Issue Advanced Control and Power Electronics for Electric Vehicles)
Show Figures

Figure 1

14 pages, 4531 KB  
Article
A Permanent Magnet Synchronous Machine with Mechanically Controlled Excitation Flux
by Piotr Paplicki
Energies 2025, 18(17), 4781; https://doi.org/10.3390/en18174781 - 8 Sep 2025
Viewed by 595
Abstract
This paper presents the initial design of a permanent magnet synchronous machine with mechanically controlled excitation flux using the linear sliding motion of an additional excitation source placed inside a hollow shaft in the rotor. A new rotor design concept and assembling method [...] Read more.
This paper presents the initial design of a permanent magnet synchronous machine with mechanically controlled excitation flux using the linear sliding motion of an additional excitation source placed inside a hollow shaft in the rotor. A new rotor design concept and assembling method are described and presented in detail. On the basis of 3D-FE analysis results, the principle of adjusting reluctance, magnetic flux distribution, flux linkage, field weakening rate, no-load back EMF waveforms, electromagnetic torque, magnetic tension, and the effectiveness of the excitation adjustment of the presented machine design are discussed. The presented machine concept enables the design of permanent magnet excited machines with a good flux control range operating in changing load conditions under variable rotor speed. Full article
Show Figures

Figure 1

17 pages, 3386 KB  
Article
Anti-Windup Method Using Ancillary Flux-Weakening for Enhanced Induction Motor Performance Under Voltage Saturation
by Xu Zhang, Shuhan Xi and Jing Zhang
Electronics 2025, 14(17), 3496; https://doi.org/10.3390/electronics14173496 - 31 Aug 2025
Viewed by 660
Abstract
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the [...] Read more.
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the proposed ancillary flux-weakening (AFW) method introduces two d-axis current compensation paths. One compensation path is from the reference value of the q-axis current, which simplifies the traditional three-PI cascade FW path into a single PI path in the transient process. The other compensation path is derived from the q-axis current tracking error to mitigate voltage saturation caused by orientation error. Comparative experiments show that during precise direction acceleration, the AFW method increases the current response time by 35% and reduces the peak voltage fluctuation by 38.98%. It also reduces low voltage ripple by 76.4% in inaccurate direction and burst load conditions. The results confirm a significant enhancement of dynamic performance and voltage anti-saturation capability in the FW region. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

14 pages, 3320 KB  
Article
Numerical Simulation Research on Thermoacoustic Instability of Cryogenic Hydrogen Filling Pipeline
by Qidong Zhang, Yuan Ma, Fushou Xie, Liqiang Ai, Shengbao Wu and Yanzhong Li
Cryo 2025, 1(3), 9; https://doi.org/10.3390/cryo1030009 - 9 Jul 2025
Cited by 1 | Viewed by 449
Abstract
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux [...] Read more.
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux density distribution, pressure amplitude, and frequency. The instability boundary of hydrogen TAO is also obtained. The results show that (1) the temperature distribution and flow characteristics of the gas inside the pipeline exhibit significant periodic changes. In the first half of the oscillation period, the cold-end gas moves towards the end of the pipeline. Low-viscosity cold hydrogen is easily heated and rapidly expands. In the second half of the cycle, the expanding cold gas pushes the hot-end gas to move towards the cold end, forming a low-pressure zone and causing gas backflow. (2) Thermoacoustic oscillation can also cause additional thermal leakage on the pipeline wall. The average heat flux during one cycle is 1150.1 W/m2 for inflow and 1087.7 W/m2 for outflow, with a net inflow heat flux of 62.4 W/m2. (3) The instability boundary of the system is mainly determined by the temperature ratio of the cold and hot ends α, temperature gradient β, and length ratio of the cold and hot ends ξ. Increasing the pipe diameter and minimizing the pipe length can effectively weaken the amplitude of thermoacoustic oscillations. This study provides theoretical support for predicting thermoacoustic oscillations in low-temperature hydrogen transport pipeline systems and offers insights for system stability control and design verification. Full article
Show Figures

Figure 1

20 pages, 13768 KB  
Article
Influence of Hybridization Ratio on Field Back-EMF Ripple in Switched Flux Hybrid Excitation Machines
by Xiaoyong Sun, Ruizhao Han, Ruyu Shang and Zhiyu Yang
Machines 2025, 13(6), 473; https://doi.org/10.3390/machines13060473 - 30 May 2025
Viewed by 542
Abstract
Hybrid excited machines are strong competitors for application in hybrid/full electric vehicles due to their high torque density and strong air gap field-regulating capability. Similar to armature back-EMF, back-EMF also exists in the field windings of hybrid excited machines. However, the existence of [...] Read more.
Hybrid excited machines are strong competitors for application in hybrid/full electric vehicles due to their high torque density and strong air gap field-regulating capability. Similar to armature back-EMF, back-EMF also exists in the field windings of hybrid excited machines. However, the existence of field back-EMF is harmful to the safe and stable operation of machine systems, e.g., lower efficiency, higher torque ripple, reduced control performance, etc. In this paper, the influence of the hybridization ratio k, i.e., the ratio of the field winding slot area to the total field slot area, on the field back-EMF in hybrid excited machines with a switched flux stator is comprehensively investigated. In addition, a comparative study of the field back-EMF ripple in hybrid excited machines and wound field synchronous machines is conducted. It shows that the field back-EMF in flux-enhancing, zero field current, and flux-weakening modes is significantly affected by the hybridization ratio under different conditions. Moreover, the on-load field back-EMF in wound field machines is considerably higher than that in hybrid excited machines due to the mitigated magnetic saturation level in the field winding’s magnetic flux path. Finally, to validate the results predicted using the finite element method, a prototype hybrid excited machine is built and tested. Full article
Show Figures

Figure 1

19 pages, 4959 KB  
Article
Performance Optimization of a High-Speed Permanent Magnet Synchronous Motor Drive System for Formula Electric Vehicle Application
by Mahmoud Ibrahim, Oskar Järg, Raigo Seppago and Anton Rassõlkin
Sensors 2025, 25(10), 3156; https://doi.org/10.3390/s25103156 - 16 May 2025
Cited by 1 | Viewed by 2339
Abstract
The proliferation of electric vehicle (EV) racing competitions, such as Formula electric vehicle (FEV) competitions, has intensified the quest for high-performance electric propulsion systems. High-speed permanent magnet synchronous motors (PMSMs) for FEVs necessitate an optimized control strategy that adeptly manages the complex interplay [...] Read more.
The proliferation of electric vehicle (EV) racing competitions, such as Formula electric vehicle (FEV) competitions, has intensified the quest for high-performance electric propulsion systems. High-speed permanent magnet synchronous motors (PMSMs) for FEVs necessitate an optimized control strategy that adeptly manages the complex interplay between electromagnetic torque production and minimal power loss, ensuring peak operational efficiency and performance stability across the full speed range. This paper delves into the optimization of high-speed PMSM, pivotal for its application in FEVs. It begins with a thorough overview of the FEV motor’s basic principles, followed by the derivation of a detailed mathematical model that lays the groundwork for subsequent analyses. Utilizing MATLAB/Simulink, a simulation model of the motor drive system was constructed. The proposed strategy synergizes the principles of maximum torque per ampere (MTPA) with the flux weakening control technique instead of conventional zero direct axis current (ZDAC), aiming to push the boundaries of motor performance while navigating the inherent limitations of high-speed operation. Covariance matrix adaptation evolution strategy (CMA-ES) was deployed to determine the optimal d-q axis current ratio achieving maximum operating torque without overdesign problems. The implementation of the optimized control strategy was rigorously tested on the simulation model, with subsequent validation conducted on a real test bench setup. The outcomes of the proposed technique reveal that the tailored control strategy significantly elevates motor torque performance by almost 22%, marking a pivotal advancement in the domain of high-speed PMSM. Full article
(This article belongs to the Special Issue Cooperative Perception and Control for Autonomous Vehicles)
Show Figures

Figure 1

25 pages, 3018 KB  
Article
Virtual Flux Control Methods for Grid-Forming Converters: A Four-Method Comparison
by Juan Dolado Fernández, Joaquín Eloy-García, Santiago Arnaltes Gómez, Samir Kouro, Hugues Renaudineau and José Luis Rodríguez Amenedo
Appl. Sci. 2025, 15(9), 5157; https://doi.org/10.3390/app15095157 - 6 May 2025
Viewed by 1185
Abstract
The increasing penetration of renewable energy generation in recent years has introduced significant changes and challenges to modern power systems. One of the most critical challenges is the reduction in system inertia, which decreases grid stability and subsequently weakens the electrical network. To [...] Read more.
The increasing penetration of renewable energy generation in recent years has introduced significant changes and challenges to modern power systems. One of the most critical challenges is the reduction in system inertia, which decreases grid stability and subsequently weakens the electrical network. To address this issue, grid-forming (GFM) converters have emerged as a promising solution to maintain stability in weak grids. This paper proposes three novel control schemes for GFM converters and compares them with the performance of another topology recently published by the same authors. The four evaluated control schemes are based on the virtual flux variable which allows current limiting without using internal current loops, improving the stability of the control system. The assessment includes methods based on PI regulators, using the mathematical flatness property of differential algebra, direct control (DC), and model predictive control (MPC). The results demonstrate the robustness and correct operation of all four control strategies as GFM converters. Furthermore, through tests involving disturbances such as frequency variations, voltage sags, phase jumps, and transitions to islanded mode, their differences in terms of dynamic response, switching frequency, and current quality are clearly evidenced. Full article
(This article belongs to the Special Issue Advances in New Sources of Energy and Fuels)
Show Figures

Figure 1

22 pages, 9825 KB  
Article
Optimized Feedback Type Flux Weakening Control of Non-Salient Permanent Magnet Synchronous Machines in MTPV Region with Improved Stability
by Chao Wang, Ziqiang Zhu, Lei Xu, Ximeng Wu and Kejin Lu
Energies 2025, 18(9), 2282; https://doi.org/10.3390/en18092282 - 29 Apr 2025
Viewed by 652
Abstract
This paper introduces an enhanced approach for optimizing the flux-weakening performance of a non-salient permanent magnet synchronous machine (PMSM), by incorporating the maximum torque per voltage (MTPV) region into a conventional voltage magnitude feedback control strategy. The MTPV control strategy is initially optimized [...] Read more.
This paper introduces an enhanced approach for optimizing the flux-weakening performance of a non-salient permanent magnet synchronous machine (PMSM), by incorporating the maximum torque per voltage (MTPV) region into a conventional voltage magnitude feedback control strategy. The MTPV control strategy is initially optimized for steady-state performance by incorporating the effect of resistance, which plays a crucial role in small power motors. To maintain stability and good dynamics in the flux-weakening region, a current command feedback MTPV controller is utilized, as opposed to a voltage command feedback approach. Additionally, to address stability concerns in the MTPV region, a feedback type proportional-integral (PI) MTPV controller is designed and implemented. The stability in both the over-modulation and various flux-weakening regions is further enhanced using a voltage vector modifier (VVM). Therefore, the proposed feedback-based flux-weakening control enhances system steady-state performance, dynamic response, and stability across both linear and over modulation regions under various flux-weakening conditions, making it suitable for general-purpose applications. The effectiveness of the proposed method is validated through experimental results. Full article
Show Figures

Figure 1

13 pages, 4883 KB  
Article
On Full-Order Flux Observer and Its Discretization for Induction Motor Control
by Peng Zhang, Jie Wang, Yihao Yang, Shuai Liu and Jingtao Huang
Electronics 2025, 14(5), 916; https://doi.org/10.3390/electronics14050916 - 25 Feb 2025
Viewed by 817
Abstract
Accurate flux observation is crucial for the high-performance control of induction motors (IMs). Implementing a full-order flux observer algorithm in digital controllers requires discretizing the continuous-domain full-order flux observer. However, the errors introduced by discretization increase with rising rotor speed. In the field-weakening [...] Read more.
Accurate flux observation is crucial for the high-performance control of induction motors (IMs). Implementing a full-order flux observer algorithm in digital controllers requires discretizing the continuous-domain full-order flux observer. However, the errors introduced by discretization increase with rising rotor speed. In the field-weakening region, inappropriate discretization methods can lead to significant flux estimation errors, severely affecting the performance of model predictive control-based induction motors and potentially causing system instability. To enhance the convergence speed and stability of the observer and reduce discretization errors in the field-weakening region, this paper designs a feedback gain matrix suitable for high-speed field-weakening regions and conducts a study and summary of commonly used discretization methods. Discrete full-order flux observer models based on the forward Euler method, improved Euler method, and third-order Runge–Kutta method are designed. The discretization error, stability, and model complexity of the observers using these three discretization methods in the field-weakening region are analyzed. The experimental results demonstrate that the improved Euler method can achieve high discretization accuracy with relatively low computational complexity, making it a suitable discretization approach for full-order flux observers. Full article
(This article belongs to the Special Issue Digital Control to Power Electronics, 2nd Edition)
Show Figures

Figure 1

12 pages, 2691 KB  
Article
Experimental Study on the Thickening Characteristics of Ultrafine Tailings
by Jiandong Wang, Zhaolong Du, Xiaohui Liu and Aixiang Wu
Minerals 2025, 15(2), 100; https://doi.org/10.3390/min15020100 - 22 Jan 2025
Viewed by 1722
Abstract
To investigate the thickening characteristics of ultrafine tailings and the relationship between bed height and underflow concentration, a series of experiments, including graduated cylinder sedimentation tests, small-scale dynamic thickening, and semi-industrial experiments, were conducted. The results show that adding flocculants accelerates settling velocity, [...] Read more.
To investigate the thickening characteristics of ultrafine tailings and the relationship between bed height and underflow concentration, a series of experiments, including graduated cylinder sedimentation tests, small-scale dynamic thickening, and semi-industrial experiments, were conducted. The results show that adding flocculants accelerates settling velocity, with a significant change occurring at 50 g/t when the bridging effect weakens. Solid flux increases initially with feed concentration but decreases after reaching a peak at 8%, where the maximum solid flux is 0.322 t·m−2·h−1. Reducing solid flux, lowering flocculant dosage, and increasing bed height all contribute to higher underflow concentration, while reducing solid flux and increasing flocculant dosage lowers overflow turbidity. The variation in underflow concentration in the deep cone thickener (DCT) occurs in three phases: continuous feeding with no discharge, dynamic equilibrium with a stable bed height, and bed descent with increasing underflow discharge. At the same bed height, underflow concentration is lower during the bed descent phase compared to the continuous feeding phase. This study offers valuable insights for the precise control of underflow concentration in ultrafine tailing thickening processes. Full article
Show Figures

Graphical abstract

18 pages, 8696 KB  
Article
Traction Synchronous Machine with Rotor Field Winding and Two-Phase Harmonic Field Exciter
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Aleksey Paramonov and Victor Goman
World Electr. Veh. J. 2025, 16(1), 25; https://doi.org/10.3390/wevj16010025 - 6 Jan 2025
Cited by 2 | Viewed by 2227
Abstract
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant [...] Read more.
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant power speed range in the field weakening region. An alternative to permanent magnet motors is synchronous motors with field windings. This article presents a novel design of a traction brushless synchronous motor with a field winding and a two-phase harmonic exciter winding on the rotor and zero-sequence signal injection. The two-phase harmonic exciter winding increases the electromotive force on the field winding compared to a single-phase one and makes it possible to start the motor at any rotor position. This article discusses the advantages of the proposed design over conventional solutions. A simplified mathematical model based on the finite element method for steady state simulation is presented. The machine performance of a hysteresis current controller and a field-oriented PI current controller are compared using the model. Full article
Show Figures

Figure 1

16 pages, 5589 KB  
Article
Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range
by Yong Chen and Ruodan Yuan
World Electr. Veh. J. 2024, 15(11), 496; https://doi.org/10.3390/wevj15110496 - 30 Oct 2024
Cited by 2 | Viewed by 1995
Abstract
To address the impact of load disturbances on the full-speed-range control of an interior permanent magnet synchronous motor (PMSM), an active disturbance rejection control (ADRC) method is proposed. The speed loop employs phased field-weakening control (FW) based on ADRC, while the current loop [...] Read more.
To address the impact of load disturbances on the full-speed-range control of an interior permanent magnet synchronous motor (PMSM), an active disturbance rejection control (ADRC) method is proposed. The speed loop employs phased field-weakening control (FW) based on ADRC, while the current loop utilizes proportional-integral-derivative (PID) control. Starting from the motor parameters, the Lagrange multiplier method was used to derive the critical speeds for the maximum torque per ampere (MTPA) and maximum torque per voltage (MTPV) ratios, and the timing for the field-weakening control was analyzed. A full-speed-range control model of the motor was established, and an ADRC-based speed loop controller was designed to achieve smooth transitions between high speeds and anti-disturbance solid capabilities. Based on the proposed control strategy, a 21 kW PMSM was used as the research object, and a full-speed-range control simulation model was developed in MATLAB/SIMULINK to verify the strategy. Compared to the traditional PID control, the simulation results demonstrate that the proposed strategy effectively observes and compensates for load disturbances, significantly reducing initial torque oscillations under three different operating conditions. After a sudden load increase, torque oscillations were reduced by 16%, with the stator current reaching steady state 0.03 s faster, response speed improving by 0.02 s, smooth transitions between speed ranges, and enhanced anti-disturbance performance. Full article
Show Figures

Figure 1

24 pages, 7299 KB  
Article
An Anti-Disturbance Extended State Observer-Based Control of a PMa-SynRM for Fast Dynamic Response
by Dongyang Li, Shuo Wang, Chunyang Gu, Yuli Bao, Xiaochen Zhang, Chris Gerada and He Zhang
Energies 2024, 17(17), 4260; https://doi.org/10.3390/en17174260 - 26 Aug 2024
Cited by 2 | Viewed by 1444
Abstract
The control system of PMa-SynRMs (Permanent Magnet-assisted Synchronous Reluctance Machines) exhibit susceptibility to external disturbances, thereby emphasizing the utmost significance of employing an observer to effectively observe and suppress system disturbances. Meanwhile, disturbances in load are sensitive to control system noise, which may [...] Read more.
The control system of PMa-SynRMs (Permanent Magnet-assisted Synchronous Reluctance Machines) exhibit susceptibility to external disturbances, thereby emphasizing the utmost significance of employing an observer to effectively observe and suppress system disturbances. Meanwhile, disturbances in load are sensitive to control system noise, which may be introduced from current sensors, hardware circuit board systems, sensor-less control, and analog position sensors. To tackle these problems, this paper proposes an A-DESO (anti-disturbance extended state observer) to improve the dynamic performance, noise suppression, and robustness of PMa-SynRMs in both the constant torque and FW (flux weakening) regions. With the proposed A-DESO, lumped disturbance in torque could be detected, and speed could be extracted in position with unmeasurable noise. Thanks to the merits of the small observation error in the low-frequency region and the excellent anti-disturbance performance in the high-frequency region of the proposed A-DESO, the control of the PMa-SynRM features the advantages of a fast response and good noise immunity ability within the same observation error range. The proposed A-DESO presents a shorter convergence time and a better noise suppression ability, which leads to a better dynamic response of the PMa-SynRM when encountering an unknown load disturbance compared to the traditional ESO-based control, according to simulations and experiments. Full article
Show Figures

Figure 1

Back to TopTop