Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = flux film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2337 KB  
Article
The Evaluation of Ammonium Sulphate as a Potential Draw Solute in a Hybrid FO-RO Process to Concentrate Nutrients (NPK) from a Simulated Liquid Digestate—Part I: Deionized Water as a Feed Solution
by Marsa Tolouei, Roshan Abraham, Niloofar Abdehagh, Majid Sartaj and Boguslaw Kruczek
Membranes 2025, 15(12), 366; https://doi.org/10.3390/membranes15120366 (registering DOI) - 1 Dec 2025
Abstract
The ultimate objective of this research is to concentrate nutrients—nitrogen (N), phosphorus (P), and potassium (K)—and produce process water from a chemically pretreated liquid digestate using an FO-RO hybrid process. However, in this manuscript, we assessed the suitability of (NH4)2 [...] Read more.
The ultimate objective of this research is to concentrate nutrients—nitrogen (N), phosphorus (P), and potassium (K)—and produce process water from a chemically pretreated liquid digestate using an FO-RO hybrid process. However, in this manuscript, we assessed the suitability of (NH4)2SO4 and NaCl as draw solutes in a series of FO experiments employing a commercial CTA membrane and DI water as the feed solution. We also examined the regeneration of (NH4)2SO4 in a series of RO experiments at various feed concentrations and pressures using a commercial polyamide (PA) thin-film composite (TFC) membrane, ACM4. Additionally, the RO experiments enabled the experimental determination of the osmotic pressure of (NH4)2SO4 at various feed concentrations, which is crucial for designing the FO part of the hybrid process. The CTA membrane exhibited a significantly greater selectivity for (NH4)2SO4 than for NaCl at any osmotic pressure. The RO experiments demonstrated the possibility of reconcentrating (NH4)2SO4 to 0.5 mol/L, with a corresponding water flux of 60 L h−1 m−2 at 40 bars. The experimentally determined osmotic pressures were lower than those predicted by van’t Hoff’s equation but were consistent with those reported in the literature using an indirect hygrometric method. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 1763 KB  
Article
Controlling the Orientation of MoS2 Films on Mo Metal Thin Film Through Sulfur Flux Regulation: A Novel Reaction-Diffusion Model
by Joonam Kim, Masakazu Ike and Kenichi Tokuda
Nanomaterials 2025, 15(23), 1783; https://doi.org/10.3390/nano15231783 - 27 Nov 2025
Viewed by 126
Abstract
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is [...] Read more.
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is achieved here solely by adjusting the sulfur concentration during the sulfurization of 400 nm RF-sputtered Mo films. The metallic Mo substrate also allows potential film transfer via selective etching—analogous to the graphene/Cu system—providing a viable route for device integration on arbitrary substrates. Analyses (XRD, Raman, and TEM) reveal that low sulfur flux (30–50 sccm) favors horizontal growth, whereas high flux (>300 sccm) induces vertical orientation. To rationalize this behavior, a reaction-diffusion model based on the Thiele modulus was developed, quantitatively linking sulfur flux to film orientation and identifying critical thresholds (~50 and ~300 sccm) governing the horizontal-to-vertical transition. This unified approach enables the realization of distinct MoS2 orientations using identical materials and processes, analogous to the orientation control in graphene growth on copper. The ability to grow orientation-controlled MoS2 on non-noble metal substrates opens new opportunities for integrating electronic (horizontal) and catalytic (vertical) functionalities, thereby advancing scalable manufacturing of TMDC-based technologies. Full article
Show Figures

Figure 1

19 pages, 5251 KB  
Article
Influence of Cross-Sectional Curve Equation on Flow Field Evolution and Particle Separation in the Spiral Concentrator of the First Turn
by Shuling Gao, Chunyu Liu, Xiaohong Zhou, Xintong Zhang, Qian Wang and Cong Han
Separations 2025, 12(12), 327; https://doi.org/10.3390/separations12120327 - 25 Nov 2025
Viewed by 173
Abstract
The flow field evolution in the first turn of the spiral concentrator is decisive for the separation efficiency of solid particles. A laboratory-scale Φ300 mm spiral concentrator was employed as the study subject. The fluid phase was simulated using the RNG k-ε (Renormalization [...] Read more.
The flow field evolution in the first turn of the spiral concentrator is decisive for the separation efficiency of solid particles. A laboratory-scale Φ300 mm spiral concentrator was employed as the study subject. The fluid phase was simulated using the RNG k-ε (Renormalization Group) turbulence model and the VOF (Volume of Fluid) multiphase model, while the particles were calculated with an Eulerian multi-fluid VOF model that incorporates the Bagnold effect. The influence of the cross-sectional curve equation on the evolution of flow field parameters in the first turn and on the separation behavior of hematite and quartz particles was systematically investigated. The results indicated that the evolution characteristics of fluid parameters, such as the depth of flow film, the tangential velocity of surface flow, the velocity of secondary circulation, and radial flux, were similar. All parameters were observed to undergo an initial decrease or increase, eventually stabilizing as the longitudinal travel progressed. A negative correlation was identified between the index of the cross-sectional curve equation and both the depth of flow film and the tangential velocity of surface flow in the inner half of the trough, whereas an inverse relationship was noted in the outer half. With an increase in the index of the cross-sectional curve equation, the outward circulation velocity in the initial stage and its radial flux in the outer zone were enhanced, while the fluctuations in the evolution of local fluid parameters were suppressed, with more active fluid radial migration observed at the indices of the cross-sectional curve equation of 2.5 and 3. As the flow field evolved, axial separation between hematite and quartz particles was progressively achieved by gravity due to their density difference. In the middle and inner-outer zones, the migration directions of hematite and quartz were observed to become opposite in the later stage of evolution, while the difference in their migration magnitudes was also found to be widened. With an increase in the index of the cross-sectional curve equation, the disparity in the axial separation and movement between hematite and quartz was enhanced, albeit with a diminishing rate of increase. The maximum separation efficiency between hematite and quartz particles was significantly improved with increased longitudinal travel, reaching over 60% by the end of the first turn; higher indices were determined to be more favorable for achieving this performance. Based on the previous research, the variation in separation indices in the third turn was investigated under both independent adjustment of the index of the cross-sectional curve equation and its combined adjustment with the downward bevel angle. Relatively high and stable separation performance was achieved with the indices of the cross-sectional curve equation of 2.5 and 3, where a maximum separation efficiency of 82.02% was obtained, thereby validating the high efficiency and suitability of the selected spiral concentrator profile. This research elucidated the decisive role of the flow field evolution through the first turn in particle separation behavior from the perspective of quantitative description of hydrodynamic parameters, providing beneficial references for the cross-sectional structure design of spirals and the prediction of the separation index of specific feed. Full article
Show Figures

Figure 1

23 pages, 7900 KB  
Article
Effect of Protrusions on the Falling Film Flow and Heat Transfer of Oily Wastewater Outside an Elliptical Tube
by Yiqi Lu, Hao Lu, Wenjun Zhao, Chuanxiao Zheng and Yajie Li
Coatings 2025, 15(11), 1340; https://doi.org/10.3390/coatings15111340 - 18 Nov 2025
Viewed by 211
Abstract
This study addresses the optimized design of falling-film heat exchanger tubes, aiming to enhance heat transfer efficiency and reduce thermal losses, thereby offering potential pathways for efficient green energy utilization. Ten tube models were established and analyzed using computational fluid dynamics (CFD) under [...] Read more.
This study addresses the optimized design of falling-film heat exchanger tubes, aiming to enhance heat transfer efficiency and reduce thermal losses, thereby offering potential pathways for efficient green energy utilization. Ten tube models were established and analyzed using computational fluid dynamics (CFD) under constant heat flux conditions. The study investigated the effects of the position, number, and ellipticity (e) of external protrusions on the flow characteristics and heat transfer performance of oily wastewater. The simulation revealed that different protrusion configurations significantly influence hydrodynamic behavior and heat transfer mechanisms. It was found that introducing flow disturbances at an early developmental stage enhances the overall heat transfer performance of the external fluid. Specifically, for a tube with e = 0.5, the heat transfer coefficients (HTC) initially increases and then decreases with increasing Reynolds numbers (Re). This behavior is attributed to the reduction in flow stability caused by the protrusions at higher Re values, which promotes vortex shedding and leads to more complex flow patterns, thereby impairing heat transfer efficiency. Furthermore, as the number of protrusions increases, the overall HTC of the enhanced elliptical tube also follows a trend of an initial increase and then decrease. These results suggest the existence of an optimal protrusion density that enhances turbulence without incurring excessive resistance that would degrade thermal performance. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

18 pages, 4266 KB  
Article
Biodegradable Film Mulching Increases Soil Respiration: A Two-Year Field Comparison with Polyethylene Film Mulching in a Semi-Arid Region of Northern China
by Xiaowei Liu, Dejun Wang, Mahepali Bazhabaike, Mingdong Zhou and Tao Yin
Agronomy 2025, 15(11), 2631; https://doi.org/10.3390/agronomy15112631 - 16 Nov 2025
Viewed by 441
Abstract
Biodegradable film mulching is increasingly used to replace polyethylene in agriculture, but effects on soil respiration (SR) and components remain unclear, especially during degradation. This study investigated biodegradable mulching’s regulation of SR, root-derived respiration (RDR), and non-root-derived respiration (NRDR) under varying phases. A [...] Read more.
Biodegradable film mulching is increasingly used to replace polyethylene in agriculture, but effects on soil respiration (SR) and components remain unclear, especially during degradation. This study investigated biodegradable mulching’s regulation of SR, root-derived respiration (RDR), and non-root-derived respiration (NRDR) under varying phases. A two-year field experiment was conducted in a rainfed maize system in northern China, comparing conventional tillage with biodegradable film mulching (BM), conventional tillage with polyethylene film mulching (PM), and conventional tillage without mulching (CT). Continuous measurements of soil CO2 concentration (SCC), temperature, water content, and respiration components were used to assess dynamic responses. Results showed that BM enhanced SR and shifted peak timing, with the SR peaking at 106 days after sowing (DAS) under BM, 91.8 DAS under PM, and 91.2 DAS under CT, mainly through a more sustained RDR (BM peak at 103 DAS with a broader peak and greater cumulative RDR than PM and CT). As the biodegradable plastic film degraded, NRDR was higher during the degradation phase, consistent with a priming-like response. These phase-dependent effects suggest that BM first facilitates root growth then serves as a microbial substrate. Moreover, elevated SCC was positively associated with both RDR and NRDR, indicating that CO2 may function as a regulatory signal rather than a passive byproduct of respiration. These findings reveal distinct temporal mechanisms by which BM influences soil carbon fluxes and offer mechanistic insights into the sustainable application of biodegradable film mulching. Future research should evaluate long-term effects on microbial community composition, soil carbon balance, and potential trade-offs with crop productivity and environmental risks. Full article
(This article belongs to the Special Issue Microplastics in Farmland and Their Impact on Soil)
Show Figures

Figure 1

21 pages, 8458 KB  
Article
Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery
by Nuhu Dalhat Mu’azu, Mukarram Zubair, Mohammad Saood Manzar, Aesha H. Alamri, Ishraq H. Alhamed, Asaad Al Alawi and Muhammad Nawaz
Membranes 2025, 15(11), 340; https://doi.org/10.3390/membranes15110340 - 14 Nov 2025
Viewed by 520
Abstract
The ever-increasing number of discarded end-of-life dialysate polyamide thin-film composite membranes (DEoLMs) from presents both environmental and economic challenges for health centers. Traditional thermo-chemical cleaning techniques have been deployed for the rehabilitation of DEoLMs. This study further investigated the application of chemo-ultrasonication rehabilitation [...] Read more.
The ever-increasing number of discarded end-of-life dialysate polyamide thin-film composite membranes (DEoLMs) from presents both environmental and economic challenges for health centers. Traditional thermo-chemical cleaning techniques have been deployed for the rehabilitation of DEoLMs. This study further investigated the application of chemo-ultrasonication rehabilitation of dialysate-production-related DEoLM for potential reuse in spent dialysate recovery considering salt and creatinine—a typical uremic toxin-removal from water. The DEoLM was rehabilitated using low-concentration citric acid (CA) and sodium lauryl sulfate (SLS) under ultrasonic waves (45 kHz, 30 min agitation). Considering different rehabilitation protocols, the synergistic effects of heating (HT) and the chemical agents, with and without and ultrasonic waves (SC) were evaluated through FTIR, SEM, and EDX analyses, and the performance of the rehabilitated DEoLM was assessed via water flux and permeance, and efficiencies for conductivity and creatinine rejection. The fully integrated protocol chemo-ultrasonication (HT + SC + chemical agents) yielded the highest performance, achieving 93.56% conductivity and 96.83% creatinine removal, with water flux of 113.48 L m−2 h−1 and permeances of 6.31 L m−2 h−1 bar−1, at markedly reduced pressures. The chemo-sonic-rehabilitated-DEoLM removed the organic–inorganic foulants beyond thermo-chemical cleaning. This suggests that the sonication waves had a great impact regarding rejuvenating the fouled DEoL dialysate membrane, offering a sustainable, cost-effective pathway for extending membrane life, and supporting sustainable water management to achieve circular economy goals within healthcare centers. Full article
(This article belongs to the Topic Separation Techniques and Circular Economy)
Show Figures

Figure 1

16 pages, 2903 KB  
Article
Ternary Organic Photovoltaics at a Turning Point: Mechanistic Perspectives on Their Constraints
by Hou-Chin Cha, Kang-Wei Chang, Chia-Feng Li, Sheng-Long Jeng, Yi-Han Wang, Hui-Chun Wu and Yu-Ching Huang
Nanomaterials 2025, 15(22), 1702; https://doi.org/10.3390/nano15221702 - 11 Nov 2025
Viewed by 312
Abstract
Ternary organic photovoltaics (OPVs) are considered as the next step beyond binary systems, aiming to achieve synergistic improvements in absorption, energetic alignment, and charge transport. However, despite their conceptual appeal, most ternary blends do not outperform binary counterparts, particularly under indoor illumination where [...] Read more.
Ternary organic photovoltaics (OPVs) are considered as the next step beyond binary systems, aiming to achieve synergistic improvements in absorption, energetic alignment, and charge transport. However, despite their conceptual appeal, most ternary blends do not outperform binary counterparts, particularly under indoor illumination where photon flux and carrier dynamics impose strict limitations. To comprehensively understand this discrepancy, multiple ternary systems were systematically examined to ensure that the observed behaviors are representative rather than case specific. In this study, we systematically investigate this discrepancy by comparing representative donor–donor–acceptor (D–D–A) and donor–acceptor–acceptor (D–A–A) systems under both AM 1.5G and TL84 lighting. In all cases, the broadened absorption fails to yield effective photocurrent; instead, redundant excitations, reduced driving forces for charge separation, and disrupted percolation networks collectively diminish device performance. Recombination and transient analyses reveal that the third component often introduces energetic disorder and trap-assisted recombination instead of facilitating beneficial cascade pathways. Although the film morphology remains smooth, interfacial instability under low-light conditions further intensifies performance losses. The inclusion of several systems allows the identification of consistent mechanistic trends across different ternary architectures, reinforcing the generality of the conclusions. This work establishes a mechanistic framework linking molecular miscibility, energetic alignment, and percolation continuity to device-level behavior, clarifying why ternary strategies rarely deliver consistent efficiency improvements. Ultimately, indoor OPV performance is determined not by spectral breadth but by maintaining balanced charge transport and stable energetic landscapes, which represents an essential paradigm for advancing ternary OPVs from concept to practical application. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

15 pages, 2298 KB  
Article
Seed-Layer-Assisted Liquid-Phase Epitaxial Growth of YIG Films on Single-Crystal Yttrium Aluminum Garnet Substrates: Evidence for Enhancement in Strain-Induced Anisotropy
by Chaitrali Kshirsagar, Rao Bidthanapally, Ying Liu, Peng Zhou, Sahana Mukund, Aruna Bidthanapally, Hongwei Qu, Deepa Xavier, Subhabrat Samantaray, Venkatachalam Subramanian, Michael R. Page and Gopalan Srinivasan
Crystals 2025, 15(11), 953; https://doi.org/10.3390/cryst15110953 - 4 Nov 2025
Viewed by 388
Abstract
Epitaxial thick films of yttrium iron garnet (YIG) are ideal for use in microwave devices due to their low losses at high frequencies. This report is on the growth of strain-engineered YIG films by liquid-phase epitaxy (LPE) on yttrium aluminum garnet (YAG) substrates [...] Read more.
Epitaxial thick films of yttrium iron garnet (YIG) are ideal for use in microwave devices due to their low losses at high frequencies. This report is on the growth of strain-engineered YIG films by liquid-phase epitaxy (LPE) on yttrium aluminum garnet (YAG) substrates with −3% lattice mismatch with YIG. Since the use of a lattice-matched substrate is preferred for LPE growths, a seed layer of YIG, 370–400 nm in thickness, was deposited by pulsed laser deposition (PLD) on (100), (110), and (111) YAG substrates. The seed layers were stoichiometric with magnetic parameters in agreement with the parameters for bulk single-crystal YIG and with strain-induced perpendicular magnetic anisotropy field Ha = 0.19–0.43 kOe. YIG films, 4 to 8.4 μm in thickness, were grown by LPE at 870 °C on YAG substrates with the seed layers using the PbO+B2O3 flux and annealed in air at 1000 °C. The films were Y-rich and Fe-deficient and confirmed to be epitaxial single crystals by X-ray diffraction. The saturation magnetization 4πMs at room temperature was rather high and ranged from 1.9 kG to 2.3 kG. Ferromagnetic resonance at 5–15 GHz showed the absence of significant magneto-crystalline anisotropy in the LPE films with the line-width ΔH in the range 85–160 Oe, and Ha = 0.27–0.80 kOe which is much higher than for the seed layers. The high magnetization and Ha-values for the LPE films could be partially attributed to the off-stoichiometry. Although the strain due to the film–substrate lattice mismatch contributes to Ha, the mismatch in the thermal expansion coefficients for YIG and YAG is also a likely cause of Ha due to the high growth and annealing temperatures. The LPE-grown YIG films with high strain-induced anisotropy fields have the potential for use in self-biased microwave devices. Full article
(This article belongs to the Special Issue Single-Crystalline Composite Materials (Second Edition))
Show Figures

Figure 1

28 pages, 7655 KB  
Article
Repurposing of End-of-Life Dialysate Production Polymeric Membrane for Achieving Sustainable Hemodialysis Process Water Management
by Nuhu Dalhat Mu’azu, Aesha H. AlAmri, Ishraq H. Alhamed, Mukarram Zubair, Mohammad Saood Manzar and Muhammad Nawaz
Polymers 2025, 17(21), 2922; https://doi.org/10.3390/polym17212922 - 31 Oct 2025
Cited by 1 | Viewed by 416
Abstract
Polymeric reverse osmosis (RO) membranes are critical for producing ultrapure water for hemodialysis process, but once they reach their end-of-life (EoL) stage, mainly due to fouling, they are usually discarded—adding to the growing challenges of medical waste management. This study explores a sustainable [...] Read more.
Polymeric reverse osmosis (RO) membranes are critical for producing ultrapure water for hemodialysis process, but once they reach their end-of-life (EoL) stage, mainly due to fouling, they are usually discarded—adding to the growing challenges of medical waste management. This study explores a sustainable alternative by rehabilitating EoL thin-film composite (TFC) membrane and its reuse in recovery of spent dialysate. Using different cleaning agents that included citric acid (CA), EDTA, sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS), the mixture of CA and SLS (1:1) exhibited the most effective combination for balanced flux recovery, salt rejection, and creatinine clearance at lower TMP, achieving 90% conductivity reduction, 46.89 L/m2/h water flux, and 1.24 L/m2/h/bar permeance. FTIR, SEM, and EDX results confirmed the removal of both organic and inorganic foulants, while further process optimization revealed the critical role of cleaning temperature, SLS ratio and pressure on water permeability and improving creatinine removal. Under the optimal operational conditions, 99.89% creatinine removal, while restoring up to 80% hydraulic performance, yielding water flux and permeance of 59.36 L/m2/h and 1.79 L/m2/h/bar, respectively. These findings suggest that reduced dialysate production costs and minimize environmental impact can be significantly, achieved by extending the useful life of dialysate membranes, thereby opening a pathway toward implementing closed-loop water management and circular economy practices at dialysis centers. Full article
Show Figures

Figure 1

14 pages, 1772 KB  
Article
Effect of Nitric Acid-Modified Multi-Walled Carbon Nanotube Capping on Copper and Lead Release from Sediments
by Xiang Chen, Dongdong Zhu, Xiaohui You, Yan Wang, Li Zhou and Xiaoshuai Hang
Toxics 2025, 13(11), 912; https://doi.org/10.3390/toxics13110912 - 23 Oct 2025
Viewed by 361
Abstract
Nitric acid-treated multi-walled carbon nanotubes (CNTs) have been extensively utilized for removing dissolved heavy metals from aqueous systems; however, their use as a capping material to immobilize heavy metals in sediments has rarely been investigated. Consequently, the impact of CNTs on millimeter-scale variations [...] Read more.
Nitric acid-treated multi-walled carbon nanotubes (CNTs) have been extensively utilized for removing dissolved heavy metals from aqueous systems; however, their use as a capping material to immobilize heavy metals in sediments has rarely been investigated. Consequently, the impact of CNTs on millimeter-scale variations in pore-water heavy metal concentrations along sediment profiles remains poorly understood. In this study, CNTs were applied as a capping agent, and microelectrodes combined with high-resolution diffusive equilibrium in thin-film (HR-Peeper) samplers were employed to simultaneously obtain vertical profiles of pH, soluble copper (Cu) and lead (Pb), and dissolved oxygen (DO) in sediments in order to assess the effectiveness of CNTs in controlling the mobility of Cu and Pb. The results revealed that CNTs application markedly reduced the concentrations of soluble Cu and Pb, with maximum reduction rates of 58.69% and 64.97%, respectively. Compared with the control treatment, CNTs capping decreased the maximum release fluxes of soluble Cu and Pb by 3.78 and 1.91 µg·m−2·d−1, respectively. Moreover, CNTs treatment enhanced the stable fractions of Cu and Pb within sediments, thereby improving the sediment’s capacity to retain these metals. Overall, this study demonstrates that CNTs can serve as an effective capping material to inhibit the leaching of Cu and Pb from sediments, offering a promising strategy for the in situ remediation of heavy metal-contaminated sediments. Full article
Show Figures

Figure 1

18 pages, 6703 KB  
Article
Three-Dimensional Study of Contact Melting of a Molten Material Crust Against a Stainless Steel Plate During a Severe Reactor Accident
by Junjie Ma, Yuqing Chen, Wenzhen Chen and Hongguang Xiao
Processes 2025, 13(10), 3310; https://doi.org/10.3390/pr13103310 - 16 Oct 2025
Cited by 1 | Viewed by 334
Abstract
In severe reactor accidents, molten corium solidifies within the core to form a corium crust. Under decay heat, the high-temperature corium crust induces contact melting of internal reactor components. Given the narrow and limited dimensions of these components, this study investigated the contact [...] Read more.
In severe reactor accidents, molten corium solidifies within the core to form a corium crust. Under decay heat, the high-temperature corium crust induces contact melting of internal reactor components. Given the narrow and limited dimensions of these components, this study investigated the contact melting of a corium crust against a stainless steel plate. A three-dimensional plate contact melting model for plate-shaped corium is proposed, with its validity demonstrated through experimental verification. The patterns and factors influencing contact melting were analyzed. The results indicate that under constant heat flux boundary conditions, the melting rate depends solely on the magnitude of the heat flux density, while the effects of the contact surface geometry and heat source mass on the melting rate are negligible. The thickness of the molten liquid film is proportional to both the heat flux density and contact surface area, yet inversely proportional to both the heat source mass and aspect ratio of the contact surface. When the aspect ratio exceeds six, the model can be simplified to two dimensions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3719 KB  
Article
Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin
by Godwill Kasongo, Aude Minang Nkombe and Mujahid Aziz
Membranes 2025, 15(10), 314; https://doi.org/10.3390/membranes15100314 - 15 Oct 2025
Viewed by 678
Abstract
The implementation of wastewater management strategies and wastewater treatment techniques, such as reverse osmosis (RO), has been increasing to promote environmental sustainability and reduce freshwater consumption. Municipal secondary effluent is a promising source for reuse and reducing the strain on freshwater consumption. Still, [...] Read more.
The implementation of wastewater management strategies and wastewater treatment techniques, such as reverse osmosis (RO), has been increasing to promote environmental sustainability and reduce freshwater consumption. Municipal secondary effluent is a promising source for reuse and reducing the strain on freshwater consumption. Still, its diverse foulant composition promotes the fouling of polyamide RO membranes, leading to performance decline. In this study, 3-allyl-5,5-dimethylhydantoin (ADMH) was grafted onto thin-film composite RO membranes at varying concentrations via graft polymerization. The membranes were tested against foulant solutions of E. coli and S. aureus, as well as organic and inorganic foulant solutions mimicking the fouling activity of municipal wastewater secondary effluent. Biofouling tests showed improved mortality ratios—58.9% against E. coli and 37.4% against S. aureus—along with fouling deposition rates of 3.7–8.9% and flux recovery ratios of 69.2–96.9%. Although surface hydrophilicity increased with ADMH concentration, fouling resistance was optimal at a moderate concentration. Resistance to organic and inorganic foulants did not show similar improvement, highlighting the importance of the foulant type in determining overall membrane performance. Full article
Show Figures

Figure 1

48 pages, 5238 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): II—Estimation of the Hg Water/Air Exchange Coefficient Using the Two-Thin Film Model and Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Hong Zhang, Lesta S. Fletcher and William C. Crocker
Water 2025, 17(20), 2931; https://doi.org/10.3390/w17202931 - 10 Oct 2025
Viewed by 644
Abstract
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the [...] Read more.
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the Two-Thin Film (TTF) Model for Hg transfer together with the field-measured data of Hg emission flux (F), dissolved gaseous mercury concentration (DGM), air Hg concentration (Ca), and water temperature for Henry’s coefficient (KH) obtained from a separate field study at the CCL. The daily mean kw values range from 0.045 to 0.21 m h−1, with the min. at 0.0025–0.14 and the max. at 0.079–0.41 m h−1, generally higher for the summer, and from 0.0092 to 0.15, with the min. at 0.0032–0.033 and the max. at 0.017–0.31 m h−1, generally lower for the fall and winter, exhibiting an apparent seasonal trend. The highest kw values occur in August (mean: 0.21, max.: 0.41 m h−1). Our kw results add to and enrich the aquatic interfacial Hg transfer coefficient database and provide an alternative avenue to evaluate and select the coefficients for the TTF Model’s application. The kw results are of value in gaining insights into the Hg transfer actually occurring across the water/air interface under environmental influences (e.g., wind/wave, solar radiation). Our kw results do not show a clear, consistent correlation of kw with wind/wave effect, nor sunlight effect, in spite of some correlations in sporadic cases. Generally, the kw values do not exbibit the trends prescribed by the model sensitivity study. The comparisons of our kw results with those obtained using wind-based transfer models (the Liss/Merlivat Model, the Wanninkhof Model, and the modified linear model) show that they depart from each other. The findings of this study indicate that the TTF Model has limitations and weaknesses. One major assumption of the TTF Model is the equilibrium of the Hg distribution between the air and water films across the water/air interface. The predominant oversaturation of DGM shown by our DGM data evidently challenges this assumption. This study suggests that aquatic interfacial Hg transfer is considerably more complicated, involving a group of factors, more than just wind and wave. Full article
Show Figures

Figure 1

20 pages, 14004 KB  
Article
Study of the Tribological Properties of Self-Fluxing Nickel-Based Coatings Obtained by Gas-Flame Spraying
by Dastan Buitkenov, Nurmakhanbet Raisov, Temirlan Alimbekuly and Balym Alibekova
Crystals 2025, 15(10), 862; https://doi.org/10.3390/cryst15100862 - 30 Sep 2025
Viewed by 350
Abstract
Self-fluxing Ni-based coatings (NiCrFeBSiC) were deposited through gas-flame spraying and evaluated in three conditions: as-sprayed, flame-remelted, and furnace-heat-treated (1025 °C/5 min). Phase analysis (XRD) revealed FeNi3 together with strengthening carbides/borides (e.g., Cr7C3, Fe23(C,B)6); post-treatments [...] Read more.
Self-fluxing Ni-based coatings (NiCrFeBSiC) were deposited through gas-flame spraying and evaluated in three conditions: as-sprayed, flame-remelted, and furnace-heat-treated (1025 °C/5 min). Phase analysis (XRD) revealed FeNi3 together with strengthening carbides/borides (e.g., Cr7C3, Fe23(C,B)6); post-treatments increased lattice order. Cross-sectional image analysis showed progressive densification (thickness ~805 → 625 → 597 µm) and a drop in porosity from 7.866% to 3.024% to 1.767%. Surface roughness decreased from Ra = 31.860 to 14.915 to 13.388 µm. Near-surface microhardness rose from 528.7 ± 2.3 to 771.6 ± 4.6 to 922.4 ± 5.7 HV, while adhesion strength (ASTM C633) improved from 18 to 27 to 34 MPa. Wettability followed the densification trend, with the contact angle increasing from 53.152° to 79.875° to 89.603°. Under dry ball-on-disk sliding against 100Cr6, the friction coefficient decreased and stabilized (0.648 ± 0.070 → 0.173 ± 0.050 → 0.138 ± 0.003), and the counterbody wear-scar area shrank by ~95.6% (0.889 → 0.479 → 0.0395 mm2). Wear-track morphology evolved from abrasive micro-cutting (as-sprayed) to reduced ploughing (flame-remelted) and a polishing-like regime with a thin tribo-film (furnace). Potentiodynamic tests indicated the lowest corrosion rate after furnace treatment (CR ≈ 0.005678 mm·year−1). Overall, furnace heat treatment provided the best structure–property balance (lowest porosity and Ra, highest HV and adhesion, lowest and most stable μ, and superior corrosion resistance) and is recommended to extend the service life of NiCrFeBSiC coatings under dry sliding. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 9649 KB  
Article
Two-Phase Flow Simulation of Bubble Cross-Membrane Removal Dynamics in Boiling-Desorption Mode for Microchannel Membrane-Based Generators
by Jianrong Zhai, Hongtao Gao and Yuying Yan
Energies 2025, 18(19), 5156; https://doi.org/10.3390/en18195156 - 28 Sep 2025
Viewed by 371
Abstract
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal [...] Read more.
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal dynamics under boiling-desorption conditions, particularly the influence of membrane hydrophobicity. In this study, a two-phase flow bubble-removal model was developed to accurately represent boiling-desorption behavior. Numerical simulations were performed to investigate the effects of membrane hydrophobicity and heating power on bubble dynamics, wall temperature, venting rate, and channel pressure drop. Results show that bubble venting proceeds through four stages: nucleation and growth, liquid-film rupture with deformation, lateral spreading, and sustained vapor removal. Hydrophobicity effects become most significant from the third stage onwards. Increased hydrophobicity reduces wall temperature, with greater reductions at higher heat fluxes, and enhances venting performance by increasing total vapor removal and reducing removal time. Channel pressure fluctuations comprise high-frequency components from bubble growth and low-frequency components from venting-induced flow interruptions, with relative contributions dependent on hydrophobicity and heat flux. These findings provide new insights into bubble-removal mechanisms and offer guidance for the design and optimization of high-performance microchannel membrane-based generators. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop