Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = fluoridated hydroxyapatite nanoflowers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5685 KiB  
Article
Facile Bioinspired Preparation of Fluorinase@Fluoridated Hydroxyapatite Nanoflowers for the Biosynthesis of 5′-Fluorodeoxy Adenosine
by Ningning Li, Bingjing Hu, Anming Wang, Huimin Li, Youcheng Yin, Tianyu Mao and Tian Xie
Sustainability 2020, 12(1), 431; https://doi.org/10.3390/su12010431 - 6 Jan 2020
Cited by 15 | Viewed by 4062
Abstract
To develop an environmentally friendly biocatalyst for the efficient synthesis of organofluorine compounds, we prepared the enzyme@fluoridated hydroxyapatite nanoflowers (FHAp-NFs) using fluorinase expressed in Escherichia coli Rosetta (DE3) as the biomineralization framework. The obtained fluorinase@FHAp-NFs were characterized by scanning electron microscope (SEM), X-ray [...] Read more.
To develop an environmentally friendly biocatalyst for the efficient synthesis of organofluorine compounds, we prepared the enzyme@fluoridated hydroxyapatite nanoflowers (FHAp-NFs) using fluorinase expressed in Escherichia coli Rosetta (DE3) as the biomineralization framework. The obtained fluorinase@FHAp-NFs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and FT-IR spectrum and used in the enzymatic synthesis of 5′-fluorodeoxy adenosin with S-adenosyl-L-methionine and fluoride as substrate. At an optimum pH of 7.5, fluorinase confined in the hybrid nanoflowers presents an approximately 2-fold higher synthetic activity than free fluorinase. Additionally, after heating at 30 °C for 8 h, the FHAp-NFs retained approximately 80.0% of the initial activity. However, free enzyme could remain only 48.2% of its initial activity. The results indicate that the fluoride and hybrid nanoflowers efficiently enhance the catalytic activity and thermal stability of fluorinase in the synthesis of 5′-fluorodeoxy adenosine, which gives a green method for producing the fluorinated organic compounds. Full article
(This article belongs to the Special Issue Synthesis Methods with Green Chemistry Aspect)
Show Figures

Graphical abstract

Back to TopTop