Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = fluorescent conjugated polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3936 KiB  
Article
Atums Green Conjugated Polymer Heterojunction Films as Blue-Sensitive Photodiodes
by Zahida Batool, Razieh Firouzihaji, Mariia Babiichuk, Aria Khalili, John C. Garcia, Jau-Young Cho, Preeti Gahtori, Lukas Eylert, Karthik Shankar, Sergey I. Vagin, Julianne Gibbs and Alkiviathes Meldrum
Polymers 2025, 17(13), 1770; https://doi.org/10.3390/polym17131770 - 26 Jun 2025
Viewed by 459
Abstract
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational [...] Read more.
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational wavelength range. However, there are relatively few CPs with a strong absorption in the blue region of the spectrum where the human eye is most sensitive (440 to 470 nm) and none with an energy gap at 2.75 eV (450 nm), which corresponds to the peak of the CIE-1931 z(λ) color-matching function and the dominant blue light emission wavelength in computer and smartphone displays. Blue-light detectors in this wavelength range are important for light hazard control, sky polarization studies, and for blue-light information devices, where 450 nm corresponds to the principal emission of GaN-based light sources. We report on a new CP called Atums Green (AG), which shows promising characteristics as a blue-light photodetection polymer optimized for exactly this range of wavelengths centered around 450 nm. We built and measured a simple photodetector made from spin-coated films of AG and showed that its photosensitivity can be improved by the addition of asphaltene, a low-cost carbonaceous waste product. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

26 pages, 42606 KiB  
Review
Conjugated Polymer-Photosensitizers for Cancer Photodynamic Therapy and Their Multimodal Treatment Strategies
by Zhengqing Cheng, Qiuting Ye, Jieling Lao, Xiyu Liu and Pan Wu
Polymers 2025, 17(9), 1258; https://doi.org/10.3390/polym17091258 - 5 May 2025
Cited by 1 | Viewed by 862
Abstract
Conjugated polymers (CPs) have emerged as promising candidates for photodynamic therapy (PDT) in cancer treatment due to their high fluorescence quantum yield, excellent photostability, and remarkable reactive oxygen species (ROS) generation capability. This review systematically summarizes molecular design strategies to augment CP photosensitivity [...] Read more.
Conjugated polymers (CPs) have emerged as promising candidates for photodynamic therapy (PDT) in cancer treatment due to their high fluorescence quantum yield, excellent photostability, and remarkable reactive oxygen species (ROS) generation capability. This review systematically summarizes molecular design strategies to augment CP photosensitivity efficiency, including: (1) constructing donor–acceptor (D-A) alternating structures, (2) incorporating aggregation-induced emission (AIE) moieties, (3) employing heavy-atom effects, and (4) designing hyperbranched architectures. In addition, considering the limitations of monotherapy like tumor heterogeneity, we will further discuss the synergistic treatment strategies of CP-mediated PDT in combination with other therapeutic modalities, including photothermal therapy (PTT)-PDT, immunotherapy-PDT, chemotherapy-PDT, Chemiluminescence (CL)-PDT, diagnostic technology-PDT, and chemodynamic therapy (CDT)-PDT. These multimodal approaches leverage complementary mechanisms to achieve enhanced tumor eradication efficacy. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 9099 KiB  
Article
Polymerized Alizarin Red–Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19
by Fatema Kaladari, Mahmoud El-Maghrabey, Naoya Kishikawa, Rania El-Shaheny and Naotaka Kuroda
Biosensors 2025, 15(4), 256; https://doi.org/10.3390/bios15040256 - 16 Apr 2025
Cited by 1 | Viewed by 794
Abstract
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel [...] Read more.
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel quinone polymer zinc hybrid nanoarchitecture, referred to as polymerized alizarin red–inorganic hybrid nanoarchitecture (PARIHN), which integrates an antibody for direct use in fluorescent immunoassays, offering enhanced sensitivity, reduced costs, and improved environmental sustainability. The designed nanoarchitecture can enhance the sensitivity of the immunoassay and enable rapid results without the complexities associated with enzymes, such as their low stability and high cost. At first, a chitosan–alizarin polymer was synthesized utilizing quinone–chitosan conjugation chemistry (QCCC). Then, the chitosan–alizarin polymer was embedded with the detection antibody using zinc ion, forming PARIHN, which was proven to be a stable label with the ability to enhance the assay stability and sensitivity of the immunoassay. PARIHN can react with phenylboronic acid (PBA) or boric acid through its alizarin content to produce fluorescence signals with an LOD of 15.9 and 2.6 pm for PBA and boric acid, respectively, which is the first use of a boric acid derivative in signal generation in the immunoassay. Furthermore, PARIHN demonstrated high practicality in detecting SARS-CoV-2 nucleoprotein in fluorescence (PBA and boric acid) systems with an LOD of 0.76 and 10.85 pm, respectively. Furthermore, owing to the high brightness of our PARIHN fluorogenic reaction, our labeling approach was extended to immunochromatographic assays for SARS-CoV-2 with high sensitivity down to 9.45 pg/mL. Full article
Show Figures

Graphical abstract

20 pages, 3591 KiB  
Article
Novel HSA-PMEMA Nanomicelles Prepared via Site-Specific In Situ Polymerization-Induced Self-Assembly for Improved Intracellular Delivery of Paclitaxel
by Yang Chen, Shuang Liang, Binglin Chen, Fei Jiao, Xuliang Deng and Xinyu Liu
Pharmaceutics 2025, 17(3), 316; https://doi.org/10.3390/pharmaceutics17030316 - 1 Mar 2025
Viewed by 958
Abstract
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the [...] Read more.
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the surface of these micelles may possess potential immunogenicity, posing risks in clinical applications. To address this issue, nanomicelles based on human serum albumin (HSA)–hydrophobic polymer conjugates constructed via site-specific in situ polymerization-induced self-assembly (SI-PISA) are considered a promising alternative. The HSA shell not only ensures good biocompatibility but also enhances cellular uptake because of endogenous albumin trafficking pathways. Moreover, compared to traditional methods of creating protein–hydrophobic polymer conjugates, SI-PISA demonstrates higher reaction efficiency and better preservation of protein functionality. Methods: We synthesized HSA-PMEMA nanomicelles via SI-PISA using HSA and methoxyethyl methacrylate (MEMA)—a novel hydrophobic monomer with a well-defined and stable chemical structure. The protein activity and the PTX intracellular delivery efficiency of HSA-PMEMA nanomicelles were evaluated. Results: The CD spectra of HSA and HSA-PMEMA exhibited similar shapes, and the relative esterase-like activity of HSA-PMEMA was 94% that of unmodified HSA. Flow cytometry results showed that Cy7 fluorescence intensity in cells treated with HSA-PMEMA-Cy7 was approximately 1.35 times that in cells treated with HSA-Cy7; meanwhile, HPLC results indicated that, under the same conditions, the PTX loading per unit protein mass on HSA-PMEMA was approximately 1.43 times that of HSA. These collectively contributed to a 1.78-fold overall PTX intracellular delivery efficiency of HSA-PMEMA compared to that of HSA. Conclusions: In comparison with HSA, HSA-PMEMA nanomicelles exhibit improved cellular uptake and higher loading efficiency for PTX, effectively promoting the intracellular delivery of PTX. Tremendous potential lies in these micelles for developing safer and more efficient next-generation PTX formulations for tumor treatment. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

11 pages, 2757 KiB  
Article
Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response
by Yan Li, Han Yu, Hongjuan Li, Shiguo Sun, Ruijin Yu and Yongqian Xu
Molecules 2025, 30(5), 1121; https://doi.org/10.3390/molecules30051121 - 28 Feb 2025
Viewed by 601
Abstract
Poly(2-oxazoline) (POx), a typical thermoresponsive polymer with good biocompatibility, was conjugated with environment-sensitive tetraphenylenethene (TPE) and hydroxyphenylbenzoxazole (HBO) to achieve unique thermometer readings. Through phase transition induced by temperature, the thermometers can measure temperature in biologic range with ratiometric fluorescence response, ultrahigh sensitivity [...] Read more.
Poly(2-oxazoline) (POx), a typical thermoresponsive polymer with good biocompatibility, was conjugated with environment-sensitive tetraphenylenethene (TPE) and hydroxyphenylbenzoxazole (HBO) to achieve unique thermometer readings. Through phase transition induced by temperature, the thermometers can measure temperature in biologic range with ratiometric fluorescence response, ultrahigh sensitivity and good reversibility. Moreover, the thermometer can be used to measure the change in temperature with large fluorescence difference in living cells. Full article
(This article belongs to the Special Issue Advanced Functional Materials: Challenges and Opportunities)
Show Figures

Figure 1

22 pages, 2504 KiB  
Article
Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles
by John S. Miller, Tanner J. Finney, Ethan Ilagan, Skye Frank, Ye Chen-Izu, Keishi Suga and Tonya L. Kuhl
Biosensors 2025, 15(1), 27; https://doi.org/10.3390/bios15010027 - 7 Jan 2025
Cited by 1 | Viewed by 1310
Abstract
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. [...] Read more.
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications. Here, we focus on the characterization and optimization of polydiacetylene vesicles to tune their sensitivity for fluorogenic sensing applications. Particularly, we look at how the structure of the diacetylene (DA) hydrocarbon tail and headgroup affect the self-assembled vesicle size and stability, polymerization kinetics, and the fluorogenic, blue to red phase transition. Longer DA acyl tails generally resulted in smaller and more stable vesicles. The polymerization kinetics and the blue to red transition were a function of both the DA acyl tail length and structure of the headgroup. Decreasing the acyl tail length generally led to vesicles that were more sensitive to energetic stimuli. Headgroup modifications had different effects depending on the structure of the headgroup. Ethanolamine headgroups resulted in vesicles with potentially increased stimuli responsivity. The lower energy stimulus to induce the chromatic transition was attributed to an increase in headgroup hydrogen bonding and polymer backbone strain. Boronic-acid headgroup functionalization led to vesicles that were generally unstable, only weakly polymerized, and unable to fully transform to the red phase due to strong polar, aromatic headgroup interactions. This work presents the design of PDA vesicles in the context of biosensing platforms and includes a discussion of the past, present, and future of PDA biosensing. Full article
Show Figures

Figure 1

29 pages, 6702 KiB  
Article
Core–Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity
by Tatyana Kovshova, Julia Malinovskaya, Julia Kotova, Marina Gorshkova, Lyudmila Vanchugova, Nadezhda Osipova, Pavel Melnikov, Veronika Vadekhina, Alexey Nikitin, Yulia Ermolenko and Svetlana Gelperina
Biomolecules 2024, 14(12), 1601; https://doi.org/10.3390/biom14121601 - 14 Dec 2024
Viewed by 1651
Abstract
The objective of this study was to compare the properties of core–shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization–solvent evaporation technique [...] Read more.
The objective of this study was to compare the properties of core–shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization–solvent evaporation technique or nanoprecipitation, using poloxamer 188 (P188), a copolymer of divinyl ether with maleic anhydride (DIVEMA), and human serum albumin (HSA) as the shell-forming polymers. The shells were formed through adsorption, interfacial embedding, or conjugation. For dual fluorescent labeling, the core- and shell-forming polymers were conjugated with Cyanine5, Cyanine3, and rhodamine B. The nanoparticles had negative zeta potentials and sizes ranging from 100 to 250 nm (measured using DLS) depending on the shell structure and preparation technique. The core–shell structure was confirmed using TEM and fluorescence spectroscopy, with the appearance of FRET phenomena due to the donor–acceptor properties of the labels. All of the shells enhanced the cellular uptake of the nanoparticles in Gl261 murine glioma cells. The integrity of the core–shell structures upon their incubation with the cells was evidenced by intracellular colocalization of the fluorescent labels according to the Manders’ colocalization coefficients. This comprehensive approach may be useful for the selection of the optimal preparation method even at the early stages of the core–shell nanoparticle development. Full article
(This article belongs to the Special Issue Nanoparticles for Cancer Therapy: Challenges and Opportunities)
Show Figures

Figure 1

20 pages, 4448 KiB  
Article
Precision Synthesis of Conjugated Polymer Films by Surface-Confined Stepwise Sonogashira Cross-Coupling
by Sang Gil Youm, Mitchell T. Howell, Chien-Hung Chiang, Lu Lu, Neepa M. K. Kuruppu Arachchige, John F. Ankner, Joseph Strzalka, Yaroslav Losovyj, Jayne C. Garno and Evgueni E. Nesterov
Molecules 2024, 29(22), 5466; https://doi.org/10.3390/molecules29225466 - 20 Nov 2024
Viewed by 1257
Abstract
Thin films of poly(arylene ethynylene)-conjugated polymers, including low-energy-gap donor–acceptor polymers, can be prepared via stepwise polymerization utilizing surface-confined Sonogashira cross-coupling. This robust and efficient polymerization protocol yields conjugated polymers with a precise molecular structure and with nanometer-level control of the organization and the [...] Read more.
Thin films of poly(arylene ethynylene)-conjugated polymers, including low-energy-gap donor–acceptor polymers, can be prepared via stepwise polymerization utilizing surface-confined Sonogashira cross-coupling. This robust and efficient polymerization protocol yields conjugated polymers with a precise molecular structure and with nanometer-level control of the organization and the uniform alignment of the macromolecular chains in the densely packed film. In addition to high stability and predictable and well-defined molecular organization and morphology, the surface-confined conjugated polymer chains experience significant interchain electronic interactions, resulting in dominating intermolecular π-electron delocalization which is primarily responsible for the electronic and spectroscopic properties of polymer films. The fluorescent films demonstrate remarkable performance in chemosensing applications, showing a turn-off fluorescent response on the sub-ppt (part per trillion) level of nitroaromatic explosives in water. This unique sensitivity is likely related to the enhanced exciton mobility in the uniformly aligned and structurally monodisperse polymer films. Full article
(This article belongs to the Special Issue Recent Developments in Cross-Coupling Reactions)
Show Figures

Figure 1

7 pages, 1948 KiB  
Proceeding Paper
Synthesis, Self-Assembling and Photophysical Property Exploration of Water Self-Dispersible, Grafted Poly(p-Phenylene Vinylene)s with Nonionic, Hydrophilic and Biocompatible Side Chains
by Anca-Dana Bendrea, Demet Göen-Colak, Luminita Cianga, Elena-Gabriela Hitruc, Ioan Cianga and Mariana Pinteala
Chem. Proc. 2024, 16(1), 73; https://doi.org/10.3390/ecsoc-28-20198 - 14 Nov 2024
Viewed by 339
Abstract
Conjugated polymers (CPs), in particular poly(p-phenylene vinylene)s (PPVs), are recognized as “smart” materials with potential applications ranging from optoelectronic devices to emergent technologies and to precision medicine. The present communication reports on the synthesis and structural characterization of new dibrominated macromonomers and their [...] Read more.
Conjugated polymers (CPs), in particular poly(p-phenylene vinylene)s (PPVs), are recognized as “smart” materials with potential applications ranging from optoelectronic devices to emergent technologies and to precision medicine. The present communication reports on the synthesis and structural characterization of new dibrominated macromonomers and their derived PPVs, of rod–graft–coil architecture, whose grafted, biocompatible and hydrophilic side chains are either PEG-2000 or poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline). The Suzuki–Heck cascade reaction was used for PPVs’ obtainment. After PPVs’ structural characterization using specific techniques (such as 1H-NMR; GPC), the micellar, fluorescent nanoparticles formed by spontaneous self-assembling during simple direct dissolution in water were evaluated using dynamic light scattering for their size, complementarily combined with Atom Force Microscopy (AFM) for their shape assessing. The PPV micelles’ photophysical properties were revealed using UV-vis spectroscopy and fluorescence measurements. Full article
Show Figures

Figure 1

12 pages, 3160 KiB  
Article
Modular Synthesis of New Metalloid-Substituted Olefins from Diboryl(Silyl)Ethenes via Suzuki–Miyaura Reactions
by Tomasz Sokolnicki, Kinga Stefanowska-Kątna, Agnieszka Czapik, Jędrzej Walkowiak and Adrian Franczyk
Int. J. Mol. Sci. 2024, 25(22), 12208; https://doi.org/10.3390/ijms252212208 - 14 Nov 2024
Viewed by 1204
Abstract
A novel approach towards synthesizing new metalloid-substituted olefins has been accomplished by transforming (E)-1,2-diboryl-1-silylethenes through two consecutive Suzuki–Miyaura coupling reactions. This methodology provides an effective and selective way to obtain new, structurally different products, such as (E)-1-silyl-1-boryl-2-arylethens, (1E,3E [...] Read more.
A novel approach towards synthesizing new metalloid-substituted olefins has been accomplished by transforming (E)-1,2-diboryl-1-silylethenes through two consecutive Suzuki–Miyaura coupling reactions. This methodology provides an effective and selective way to obtain new, structurally different products, such as (E)-1-silyl-1-boryl-2-arylethens, (1E,3E)-1-silyl-1-boryl-2-alkenylethens, and (E)-1-silyl-1-aryl1-2-aryl2ethenes, which are difficult to synthesize through hydrometallation reactions and related processes. Due to the presence of reactive motifs (silyl group, Bpin moiety, and Csp2-H bond) in the structure of the final products, these molecules might be considered powerful building blocks in modern chemistry. With the aid of demetallation and cross-coupling reactions, they might be further functionalized into several invaluable chemicals, i.e., tetrasubstituted olefins (anti-cancer drugs, fluorescence materials), compounds with high π-conjugation, and polymers. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

18 pages, 2752 KiB  
Article
Synthesis of Side-Chain Liquid Crystalline Polyacrylates with Bridged Stilbene Mesogens
by Gen-ichi Konishi, Yuki Sawatari, Riki Iwai, Takuya Tanaka, Yoshimichi Shimomura and Masatoshi Tokita
Molecules 2024, 29(21), 5220; https://doi.org/10.3390/molecules29215220 - 4 Nov 2024
Cited by 5 | Viewed by 2118
Abstract
In recent years, π-conjugated liquid crystalline molecules with optoelectronic functionalities have garnered considerable attention, and integrating these molecules into side-chain liquid crystalline polymers (SCLCPs) holds potential for developing devices that are operational near room temperature. However, it is difficult to design SCLCPs with [...] Read more.
In recent years, π-conjugated liquid crystalline molecules with optoelectronic functionalities have garnered considerable attention, and integrating these molecules into side-chain liquid crystalline polymers (SCLCPs) holds potential for developing devices that are operational near room temperature. However, it is difficult to design SCLCPs with excellent processability because liquid crystalline mesogens are rigid rods, have low solubility in organic solvents, and have a high isotropization temperature. Recently, we developed near-room-temperature π-conjugated nematic liquid crystals based on “bridged stilbene”. In this work, we synthesized a polyacrylate SCLCP incorporating a bridged stilbene that exhibited a nematic phase near room temperature and could maintain liquid crystallinity for more than three months. We conducted a thorough phase structure analysis and evaluated the optical properties. The birefringence values of the resulting polymers were higher than those of the corresponding monomers because of the enhanced order parameters due to the polymer effect. In addition, the synthesized polymers inherited mesogen-derived AIE properties, with high quantum yields (Φfl = 0.14–0.35) in the solid state. It is noteworthy that the maximum fluorescence wavelength exhibited a redshift of greater than 27 nm as a consequence of film formation. Thus, several unique characteristics of the SCLCPs are unattainable with small molecular systems. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
Show Figures

Graphical abstract

12 pages, 4151 KiB  
Article
Gold Nanoparticles Modulate Excimer and Exciplex Dynamics of PDDCP-Conjugated Polymers
by Khalid H. Ibnaouf, Ahmed Alsadig, Hajo Idriss, Moez A. Ibrahem and Humberto Cabrera
Polymers 2024, 16(17), 2420; https://doi.org/10.3390/polym16172420 - 26 Aug 2024
Viewed by 1230
Abstract
How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work [...] Read more.
How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work aims to explore the role of gold nanoparticles (AuNPs) in modulating exciplex and excimer states within the conjugated polymer poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP), known for its photoluminescent and semi-conductive properties, aiming to create innovative composite materials with tailored optical features. The spectral analysis was conducted to investigate the effects of AuNPs on the PDDCP, varying AuNP volume percentages to measure changes in the absorption profile, molar extinction coefficient (ε), absorption cross-section (σa), and optical bandgap (Eg). Fluorescence spectra of the mixture at different volume ratios were also examined to assess exciplex formation, while amplified spontaneous emission (ASE) profiles were analyzed to study the behavior and photochemical stability of the polymer–NP hybrid material. Increasing AuNP volume induced both blue and red shifts in the absorption profile of the PDDCP. Higher AuNPs concentrations correlated with decreased ε and σa, inversely impacting Eg. The emission spectra obtained at varied AuNP volume ratios indicated significantly enhanced exciplex and excimer formations. The ASE profiles remained consistent but showed reduced intensity with increasing AuNPs concentrations, indicating their influence on hybrid material behavior and stability. The findings suggest that AuNPs affect PDDCP’s optical characteristics, altering the absorption profile, bandgap, and fluorescence spectra. Furthermore, the observed reduction in ASE intensity highlights their influence on the behavior and photochemical stability of the hybrid material. These results contribute to a better understanding of the versatile applications of plasmonic-conjugated hybrid polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 4820 KiB  
Article
Fluorescent Aromatic Polyether Sulfones: Processable, Scalable, Efficient, and Stable Polymer Emitters and Their Single-Layer Polymer Light-Emitting Diodes
by Konstantinos C. Andrikopoulos, Despoina Tselekidou, Charalampos Anastasopoulos, Kyparisis Papadopoulos, Vasileios Kyriazopoulos, Stergios Logothetidis, Joannis K. Kallitsis, Maria Gioti and Aikaterini K. Andreopoulou
Nanomaterials 2024, 14(15), 1246; https://doi.org/10.3390/nano14151246 - 25 Jul 2024
Cited by 1 | Viewed by 1711
Abstract
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange–red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak [...] Read more.
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange–red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group. Using this rationale, fluorescent polyarylethers with high molecular weights, up to 70 kDa, were developed, showing film formation ability and high thermal stability, while preserving excellent solubility in common organic, nonvolatile, and nonchlorinated solvents. Fine-tuning of the emission color was achieved through subtle changes of the comonomers’ type and ratio. Single-chromophore-bearing copolymers emitted in the blue or the yellow region of the visible spectrum, while the dual-chromophore-bearing terpolymers emitted throughout the visible spectrum, resulting in white light emission. Solutions of 20 wt% in polar aprotic solvents at ambient conditions allowed the deposition of fluorescent copolyethers and printing from non-chlorinated solvents. All polyethers were evaluated for their structural and optoelectronic properties, and selected copolymers were successfully used in the emitting layer (EML) of organic light-emitting diode (OLED) devices, using either rigid or flexible substrates. Remarkable color stability was displayed in all cases for up to 15 V of bias voltage. The Commission Internationale de L’Eclairage (CIE) of the fabricated devices is located in the blue (0.16, 0.16), yellow (0.44, 0.50), or white region of the visible spectrum (0.33, 0.38) with minimal changes according to the ratio of the comonomers. The versatile methodology toward semiconducting polyethersulfones for polymer light-emitting diodes (PLEDs) developed herein led to the scaled-up production of luminescent polymers of up to 25 g of high-molecular-weight single batches, demonstrating the effectiveness of this approach as a straightforward tool to facilitate the synthesis of flexible and printable EMLs for large-area PLED coverage. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 1993 KiB  
Article
A Fluorescent Conjugated Polar Polymer for Probing Charge Injection in Multilayer Organic Light-Emitting Transistors
by Salvatore Moschetto, Benedetta Maria Squeo, Francesco Reginato, Mario Prosa, Mariacecilia Pasini and Stefano Toffanin
Molecules 2024, 29(14), 3295; https://doi.org/10.3390/molecules29143295 - 12 Jul 2024
Cited by 1 | Viewed by 1455
Abstract
Ambipolar organic light-emitting transistors (OLETs) are extremely appealing devices for applications from sensing to communication and display realization due to their inherent capability of coupling switching and light-emitting features. However, their limited external quantum efficiency (EQE) and brightness under ambipolar bias conditions hamper [...] Read more.
Ambipolar organic light-emitting transistors (OLETs) are extremely appealing devices for applications from sensing to communication and display realization due to their inherent capability of coupling switching and light-emitting features. However, their limited external quantum efficiency (EQE) and brightness under ambipolar bias conditions hamper the progress of OLET technology. In this context, it was recently demonstrated in multi-stacked devices that the engineering of the interface between the topmost electron-transporting organic semiconductor (e-OS) and the emission layer (EML) is crucial in optimizing the recombination of the minority charges (i.e., electrons) and to enhance EQE and brightness. Here, we introduce a new light-emitting conjugated polar polymer (CPP) in a multi-stacked OLET to improve the electron injection from e-OS to EML and to study, simultaneously, electroluminescence-related processes such as exciton formation and quenching processes. Interestingly, we observed that the highly polar groups present in the conjugate polymer induced polarization-related relevant charge-trapping phenomena with consequent modulation of the entire electrostatic field distribution and unexpected optoelectronic features. In view of the extensive use of CPPs in OLETs, the use of multifunctional CPPs for probing photophysical processes at the functional interfaces in stacked devices may speed up the improvement of the light-emission properties in OLETs. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

10 pages, 1876 KiB  
Article
Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching
by Tsukuru Minamiki, Ryosuke Esaka and Ryoji Kurita
Sensors 2024, 24(13), 4245; https://doi.org/10.3390/s24134245 - 29 Jun 2024
Cited by 2 | Viewed by 1303
Abstract
Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best [...] Read more.
Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best candidates for preparing molecular sensor devices owing to their luminescent and molecular recognition properties, the development of CP-based sensor devices is still in its early stages. In this study, we herein propose a novel strategy for preparing a chemical stimuli-responsive solid-state emission system based on supramacromolecular assembly-induced emission enhancement (SmAIEE). The system was spontaneously developed by mixing only the component polymers (i.e., polythiophene and a transient cross-linking polymer). The proposed strategy can be applied to the facile preparation of molecular sensor devices. The analyte-induced fluorescent response of polythiophene originated from the dynamic displacement of the transient cross-linker in the polythiophene ensemble and the generation of the polythiophene–analyte complex. Our successful demonstration of the spontaneous preparation of the fluorescence sensor system by mixing two component polymers could lead to the development of on-site molecular analyzers including the determination of multiple analytes. Full article
(This article belongs to the Special Issue Technology Trends in Fluorescence Detection Based on Biosensor)
Show Figures

Figure 1

Back to TopTop