Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = fluid flow fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 30023 KB  
Article
Numerical and Experimental Analysis of Internal Flow Characteristics of Four-Way Opposing Diaphragm Pump
by Guangjie Peng, Han Chai, Chengqiang Liu, Kai Zhao, Jianfang Zhang and Hao Chang
Water 2025, 17(21), 3094; https://doi.org/10.3390/w17213094 - 29 Oct 2025
Viewed by 229
Abstract
This study investigates the steady-state behavior of a four-way opposed diaphragm pump. Simulations and experimental results confirm that peak stress locations align with observed damage sites. During the return stroke, diaphragm flipping induces tension at the flow-fixed interface edges, creating stress concentrations that [...] Read more.
This study investigates the steady-state behavior of a four-way opposed diaphragm pump. Simulations and experimental results confirm that peak stress locations align with observed damage sites. During the return stroke, diaphragm flipping induces tension at the flow-fixed interface edges, creating stress concentrations that contribute to fatigue and failure. Particle image velocimetry (PIV) shows that, under constant flow, increased voltage enhances umbrella valve opening, accelerates movement, broadens flow distribution, and disrupts symmetry. At 90°, valve-edge velocity exhibits sharp, high-amplitude oscillations and a narrow, elongated return region. Vortices near the valve port interfere with fluid motion, causing pressure fluctuations and potential sealing issues or increased opening resistance. Higher flow rates intensify vortex strength and shift their position, generating diaphragm pressure differentials that alter flow direction and velocity, reducing stability and inducing secondary vortices. Compared to a modified diaphragm, the standard type shows more complex vortex structures, greater flow instability, and dynamic response degradation under identical pressure and varying flow. These fragmented vortices further disrupt flow, affecting pump performance. The findings provide design insights for diaphragm pump optimization. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

25 pages, 8887 KB  
Article
Effects of the Fluctuating Wind Loads on Flow Field Distribution and Structural Response of the Dish Solar Concentrator System Under Multiple Operating Conditions
by Jianing He, Hongyan Zuo, Guohai Jia, Yuhao Su and Jiaqiang E
Processes 2025, 13(11), 3444; https://doi.org/10.3390/pr13113444 - 27 Oct 2025
Viewed by 236
Abstract
With the rapid development of solar thermal power generation technology, the structural stability of the dish solar concentrator system under complex wind environments has become a critical limiting factor for its large-scale application. This study investigates the flow field distribution and structural response [...] Read more.
With the rapid development of solar thermal power generation technology, the structural stability of the dish solar concentrator system under complex wind environments has become a critical limiting factor for its large-scale application. This study investigates the flow field distribution and structural response under fluctuating wind loads using computational fluid dynamics (CFD). A three-dimensional model was developed and simulated in ANSYS Fluent under varying wind angles and speed cycles. The results indicate that changes in the concentrator’s orientation significantly influence the airflow field, with the most adverse effects observed at low elevation angles (0°) and an azimuth angle of 60°. Short-period wind loads (T = 25 s) exacerbate transient impact effects of lift forces and overturning moments, markedly increasing structural fatigue risks. Long-period winds (T = 50 s) amplify cumulative drag forces and tilting moments (e.g., peak drag of −73.9 kN at β = 0°). Key parameters for wind-resistant design are identified, including critical angles and period-dependent load characteristics. Full article
Show Figures

Figure 1

16 pages, 3674 KB  
Article
Constructing the Urban Landscape Through Heat Turbulence Fluxes as a Passive Form to Mitigate Urban Heat Islands
by Monica Ballinas, Sean Rodolfo S. Vilchis-Martínez, Adriana Lira-Oliver, Juan Gerardo Oliva Salinas and Victor L. Barradas
Land 2025, 14(10), 2013; https://doi.org/10.3390/land14102013 - 8 Oct 2025
Viewed by 482
Abstract
Urban microclimates depend on the city’s features, geographical position, climatic conditions, solar irradiance, and building materials. Many urban elements delay heat dissipation, giving rise to the urban heat island (UHI) phenomenon. (1) In Mexico City, UHIs occur mainly during the dry season (April–May) [...] Read more.
Urban microclimates depend on the city’s features, geographical position, climatic conditions, solar irradiance, and building materials. Many urban elements delay heat dissipation, giving rise to the urban heat island (UHI) phenomenon. (1) In Mexico City, UHIs occur mainly during the dry season (April–May) and likely increase in energy consumption in buildings. (2) Computational fluid dynamics models such as Ansys Fluent provide detailed flow field data related to atmospheric parameters and building surface fluctuations. With the data generated, a mitigation technique is proposed that displaces heat away from buildings, using air turbulence to actively cool them by examining the performance of w. (3) An experimental analysis was carried out to simulate thermal and aerodynamic scenarios throughout the day around three modules of different sizes, configurations, and albedo values. All modules showed a decrease in the difference between the building temperature and the air temperature, becoming colder with differences from −0.46 to −0.76 °C, while w presented values from −1.3 to 0.59 m·s−1, indicating some turbulence. (4) Therefore, it is necessary to consider mitigating UHIs in urban planning through efficient use of the properties and construction materials of each building and their arrangement in each block. Full article
Show Figures

Figure 1

36 pages, 13124 KB  
Article
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
by Yangyang Tian, Jiaxin Zhang, Gaofei Ren and Bo Deng
Materials 2025, 18(19), 4535; https://doi.org/10.3390/ma18194535 - 29 Sep 2025
Viewed by 376
Abstract
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried [...] Read more.
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First, leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second, dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients, with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third, dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa), greater soil porosity, and larger particle sizes, while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization, demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderate-porosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure, establishing robust risk quantification frameworks, and developing effective early-warning systems, thereby facilitating the practical implementation of hydrogen energy systems. Full article
Show Figures

Figure 1

16 pages, 4332 KB  
Article
Experimental Thermal Analysis of Box-Type Shell-and-Tube Configuration Filled with RT42 Phase Change Material: A Case Study
by Ihsan Ur Rahman, Numan Khan, Oronzio Manca, Bernardo Buonomo and Sergio Nardini
Physchem 2025, 5(4), 39; https://doi.org/10.3390/physchem5040039 - 28 Sep 2025
Viewed by 566
Abstract
Thermal management in heat exchangers is crucial in many industrial, medical, and scientific applications. However, reducing dependency on active energy sources still represents a substantial challenge. In this context, phase change materials (PCMs) offer an effective solution due to their ability to store [...] Read more.
Thermal management in heat exchangers is crucial in many industrial, medical, and scientific applications. However, reducing dependency on active energy sources still represents a substantial challenge. In this context, phase change materials (PCMs) offer an effective solution due to their ability to store and release large amounts of latent heat, assisting in passive thermal management. Therefore, this study proposes the use of RT42 PCM inside a box-type shell-and-tube configuration to establish the relationship between flow rate and charging and discharging behavior of PCM. In the proposed system, heat transferring fluid (HTF) water is circulated in the internal tubes at 60 °C, where the temperature is monitored by a series of thermocouples strategically placed inside the box-type configuration. To evaluate the effect of the flow of HTF on the thermal behavior of the PCM, the charging (melting) and discharging (solidification) analysis is performed by varying the water flow rate at three levels: 1.2, 0.8, and 0.4 L/min inside the laminar region (Re < 2300). A thermal camera and two webcams were used to assess the surface temperature distribution and PCM response, respectively. It was determined that increasing the flow rate accelerates charging and discharging with fluctuations in temperature curves during melting. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

24 pages, 16914 KB  
Article
Unsteady Aerodynamic Errors in BEM Predictions Under Yawed Flow: CFD-Based Insights into Flow Structures for the NREL Phase VI Rotor
by Jiahong Hu, Hui Yang and Jiaxin Yuan
Energies 2025, 18(18), 5027; https://doi.org/10.3390/en18185027 - 22 Sep 2025
Viewed by 501
Abstract
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational [...] Read more.
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational fluid dynamics (CFD) simulations for the NREL Phase VI wind turbine across a range of inflow velocities (7–15 m/s) and yaw angles (0°60°). A normalized absolute error metric, referenced to experimental measurements, is employed to quantify prediction discrepancies at different yaw conditions, wind speeds, and spanwise blade locations. Results indicate that the corrected BEM method maintains good agreement with measurements under non-yawed attached flow, with errors within 2%, but its accuracy declines substantially in separated and yawed flow regimes, where errors can exceed 20% at high yaw angles (e.g., 60°) and low tip-speed ratios. CFD flow-field visualizations, including vorticity and Q-criterion iso-surfaces, reveal that yawed inflow strengthens vortex interactions on the leeward side and generates Coriolis-driven spanwise vortex structures, promoting stall progression from tip to root. These unsteady phenomena induce load fluctuations that are not captured by steady-state BEM formulations. Based on these insights, future studies could incorporate vortex structure and spanwise flow features extracted from CFD into unsteady correction models for BEM, enhancing prediction robustness under complex operating conditions. Full article
Show Figures

Figure 1

29 pages, 17179 KB  
Article
Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil
by Ding Tian, Xin Xia, Yu Lu, Jianping Yuan and Qiaorui Si
Water 2025, 17(18), 2776; https://doi.org/10.3390/w17182776 - 19 Sep 2025
Viewed by 422
Abstract
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a [...] Read more.
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a computational domain established for the hydrofoil to capture the interactions between cavitation dynamics and acoustic radiation. The results indicate that the temporal variations in cavity evolution and pressure fluctuations agree well with experimental observations. The simulations predict a dominant pressure fluctuation frequency of 30.15 Hz, consistent with the cavitation shedding frequency, revealing that the evolution of leading-edge vortex structures governs the periodic variations in the lift-to-drag ratio. Cavitation significantly modifies the development of vortex structures, with vortex stretching effects mainly concentrated near cavitation regions. The dilation–contraction term is closely associated with cavity formation, while the pressure–torque tilting term predominantly affects cloud cavitation collapse. Dynamic mode decomposition (DMD) shows that the coherent structures of the leading modes exhibit morphological similarity to multiscale cavitation and vortex structures. Furthermore, hydrofoil cavitation noise consists mainly of loading noise and cavitation-induced pulsating radiation noise, with surface acoustic sources concentrated in cloud cavitation shedding regions. The dominant frequency of cavitation-induced radiation noise is highly consistent with experimental measurements. Full article
Show Figures

Figure 1

16 pages, 4948 KB  
Article
Residence Time Distribution of Variable Viscosity Fluids in the Stirred Tank
by Guangshuo Wu, Linxi Li, Zhipeng Li, Junhao Wang and Zhengming Gao
Processes 2025, 13(9), 2997; https://doi.org/10.3390/pr13092997 - 19 Sep 2025
Viewed by 487
Abstract
Stirred tanks are widely used in polymerization processes, where the residence time distribution (RTD) significantly affects monomer conversion and polymer quality. In this study, the RTD in the stirred tank with both constant and variable viscosity fluids was investigated numerically. To account for [...] Read more.
Stirred tanks are widely used in polymerization processes, where the residence time distribution (RTD) significantly affects monomer conversion and polymer quality. In this study, the RTD in the stirred tank with both constant and variable viscosity fluids was investigated numerically. To account for the viscosity evolution during polymerization, a model relating fluid viscosity to the mean age of the fluid was developed. After verifying mesh and time step independence, the effects of impeller speed, fluid space time, and viscosity varying on RTD were examined in both single-tank and two-tank configurations. Compared to the constant-viscosity fluids, the variable-viscosity fluid shows different flow behaviors such as dead zones and short-circuiting. Analysis based on the number of tanks in series showed that increasing impeller speed and extending space time can enhance mixing efficiency, where the improved mixing in the second stage of the two-tank configuration eliminated the concentration fluctuations caused by recirculating flow in the first tank, which may result in a more uniform RTD curves. Full article
Show Figures

Figure 1

29 pages, 22467 KB  
Article
Research on Internal Instability Characteristics of Centrifugal Impeller Based on Dynamic Mode Decomposition
by Xiaoping Fan, Zhuhai Zhong, Hongfen Chen, Yang Chen, Meng Wang and Xiaodong Lu
Fluids 2025, 10(9), 246; https://doi.org/10.3390/fluids10090246 - 19 Sep 2025
Viewed by 312
Abstract
Nitrogen compression requires centrifugal compressors to operate under relatively high ambient pressure. However, the internal instability characteristics of compressors handling high-density working fluids remain unclear. Therefore, this study employs Dynamic Mode Decomposition (DMD) to investigate unsteady flow fluctuations within an isolated centrifugal impeller [...] Read more.
Nitrogen compression requires centrifugal compressors to operate under relatively high ambient pressure. However, the internal instability characteristics of compressors handling high-density working fluids remain unclear. Therefore, this study employs Dynamic Mode Decomposition (DMD) to investigate unsteady flow fluctuations within an isolated centrifugal impeller under both best efficiency and near-stall conditions at high ambient pressure. Results show that as the throttling process progresses, distinct unsteady phenomena emerge within the impeller. Under near-stall conditions, the frequency of the instability is 0.44 times the blade passage frequency (BPF), manifesting as periodic pressure fluctuations throughout the entire blade passage. This instability originates from periodic passage blockages caused by fluctuations in tip leakage flow. Additionally, the pressure fluctuations at the impeller inlet exhibit a noticeable lag compared to those in the latter half of the passage. Through DMD analysis, it is found that after the tip leakage vortex exits the blade, it interacts with the pressure surface of the adjacent blade, affecting the tip loading of the neighboring blade and forming a dynamic cycle. However, this vortex is not the primary flow structure responsible for the instability. These insights into the nature of unsteady disturbances provide valuable implications for future stall warning and instability prediction technologies. Full article
Show Figures

Figure 1

21 pages, 3628 KB  
Article
Uncertainty Propagation for Power-Law, Bingham, and Casson Fluids: A Comparative Stochastic Analysis of a Class of Non-Newtonian Fluids in Rectangular Ducts
by Eman Alruwaili and Osama Hussein Galal
Mathematics 2025, 13(18), 3030; https://doi.org/10.3390/math13183030 - 19 Sep 2025
Viewed by 318
Abstract
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via [...] Read more.
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via comparison with quasi-Monte Carlo simulations, we demonstrate significantly lower computational costs across varying Coefficients of Variation (COVs). For viscosity uncertainty (Case I), results show a 0.54–2.8% increase in mean maximum velocity with standard deviations reaching 75.3–82.5% of the COV, where the power-law model exhibits the greatest sensitivity (velocity variations spanning 71.2–177.3% of the mean at COV = 20%). Pressure gradient uncertainty (Case II) preserves mean velocities but produces narrower and symmetric distributions. We systematically evaluate the effects of aspect ratio, yield stress, and flow behavior index on the stochastic velocity response of each fluid. Moreover, our analysis pioneers a performance hierarchy: Herschel–Bulkley fluids show the highest mean and standard deviation of maximum velocity, followed by power-law, Robertson–Stiff, Bingham, and Casson models. A key finding is the extreme fluctuation of the Robertson–Stiff model, which exhibits the most drastic deviations, reaching up to 177% of the average velocity. The significance of fluid-specific stochastic analysis in duct system design is underscored by these results. This is especially critical for non-Newtonian flows, where system performance and reliability are greatly impacted by uncertainties in viscosity and pressure gradient, which reflect actual operational variations. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

27 pages, 12457 KB  
Article
Research on Dual-Motor Redundant Compensation for Unstable Fluid Load of Control Valves
by Zhisheng Li, Yudong Xie, Jiazhen Han and Yong Wang
Actuators 2025, 14(9), 452; https://doi.org/10.3390/act14090452 - 15 Sep 2025
Viewed by 426
Abstract
Control valves are widely applied in nuclear power, offshore oil/gas extraction, and chemical engineering, but suffer from issues like pressure oscillation, flow control accuracy degradation, and motor overload due to unstable fluid loads (e.g., nuclear reactions in power plants and complex marine climates). [...] Read more.
Control valves are widely applied in nuclear power, offshore oil/gas extraction, and chemical engineering, but suffer from issues like pressure oscillation, flow control accuracy degradation, and motor overload due to unstable fluid loads (e.g., nuclear reactions in power plants and complex marine climates). This paper proposes a dual-motor redundant compensation method to address these challenges. The core lies in a control strategy where a single main motor drives the valve under normal conditions, while a redundant motor intervenes when load torque exceeds a preset threshold—calculated via the valve core’s fluid load model. By introducing excess load torque as positive feedback to the current loop, the method coordinates torque output between the two motors. AMESim and Matlab/Simulink joint simulations compare single-motor non-compensation, single-motor compensation, and dual-motor schemes. Results show that under inlet pressure step changes, the dual-motor compensation scheme shortens the stabilization time of the valve’s controlled variable by 40%, reduces overshoot by 65%, and decreases motor torque fluctuation by 50%. This redundant design enhances fault tolerance, providing a novel approach for reliability enhancement of deep-sea oil/gas control valves. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 8367 KB  
Article
Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures
by Chengbin Zhang, Zhaoyang Han, Bin Ma, Zhaofeng Yang, Yinshan Liu, Yaoqiang Hu, Zhenni Wang and Kejie Zhao
Processes 2025, 13(9), 2932; https://doi.org/10.3390/pr13092932 - 13 Sep 2025
Viewed by 637
Abstract
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the [...] Read more.
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the analyses covered fluid velocity, pressure distribution, and secondary flow characteristics. The results show clear quantitative trends: in the horizontal span, the stabilized centerline velocity reached 2.46 m/s (+23.0% versus the 2.00 m/s inlet). At Node 10, increasing viscosity from 0.306 to 0.603 Pa·s reduced the mean pressure by 11.2 kPa (−11.2% relative to a 0.10 MPa baseline), and a further increase to 1.185 Pa·s produced an additional 4.5 kPa (−4.5%) drop. At Node 1, the low-viscosity case yielded a centerline velocity 1.1× higher than the high-viscosity case (+10.0%). Consistent with these observations, higher viscosity and water cut decreased the average flow velocity and lengthened the duration of pressure fluctuations. These findings provide quantitative insight into the dynamic behavior of multiphase flow and offer a basis for understanding fluid–structure interaction phenomena in crude oil pipeline transport systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 58198 KB  
Article
Numerical Investigation of Ultra-Long Gravity Heat Pipe Systems for Geothermal Power Generation at Mount Meager
by Yutong Chai, Wenwen Cui, Ao Ren, Soheil Asgarpour and Shunde Yin
Mining 2025, 5(3), 55; https://doi.org/10.3390/mining5030055 - 9 Sep 2025
Viewed by 998
Abstract
The Super-long Gravity Heat Pipe (SLGHP) is an efficient geothermal energy utilization technology that can transmit thermal energy by fully utilizing natural temperature differences without external energy input. This study focuses on the high-altitude geothermal environment of Mount Meager, Canada, and employs numerical [...] Read more.
The Super-long Gravity Heat Pipe (SLGHP) is an efficient geothermal energy utilization technology that can transmit thermal energy by fully utilizing natural temperature differences without external energy input. This study focuses on the high-altitude geothermal environment of Mount Meager, Canada, and employs numerical simulations and dynamic thermal analysis to systematically investigate the thermal transport performance of the SLGHP system under both steady-state and dynamic operating conditions. The study also examines the impact of various structural parameters on the system’s performance. Three-dimensional CFD simulations were conducted to analyze the effects of pipe diameter, length, filling ratio, working fluid selection, and pipe material on the heat transfer efficiency and heat flux distribution of the SLGHP. The results indicate that working fluids such as CO2 and NH3 significantly enhance the heat flux density, while increasing pipe diameter may reduce the amount of liquid retained in the condenser section, thereby affecting condensate return and thermal stability. Furthermore, dynamic thermal analysis using a three-node RC network model simulated the effects of diurnal temperature fluctuations and variations in the convective heat transfer coefficient in the condenser section on system thermal stability. The results show that the condenser heat flux can reach a peak of 5246 W/m2 during the day, while maintaining a range of 2200–2600 W/m2 at night, with the system exhibiting good thermal responsiveness and no significant lag or flow interruption. In addition, based on the thermal output of the SLGHP system and the integration with the Organic Rankine Cycle (ORC) system, the power generation potential analysis indicates that the system, with 100 heat pipes, can provide stable power generation of 50–60 kW. In contrast to previous SLGHP studies focused on generalized modeling, this work introduces a site-specific CFD–RC framework, quantifies structural sensitivity via heat flux indices, and bridges numerical performance with economic feasibility, offering actionable insights for high-altitude deployment. This system has promising practical applications, particularly for providing stable renewable power in remote and cold regions. Future research will focus on field experiments and system optimization to further improve system efficiency and economic viability. Full article
Show Figures

Figure 1

19 pages, 6638 KB  
Article
High-Temperature Degradation of Throttling Performance in While-Drilling Jars Induced by Thermal Expansion and Fluid Rheology
by Zhaoyang Zhao, Zhanghua Lian, Hao Yu, Wei Sun, Senyan Liu, Zhiyong Wan and Jiachang Nie
Machines 2025, 13(9), 824; https://doi.org/10.3390/machines13090824 - 7 Sep 2025
Viewed by 483
Abstract
During deep and ultra-deep well drilling operations, the throttling performance of the hydraulic-while-drilling jar is significantly affected by the combined influence of temperature-induced differential thermal expansion among components and changes in the rheological properties of hydraulic oil. These effects often lead to unstable [...] Read more.
During deep and ultra-deep well drilling operations, the throttling performance of the hydraulic-while-drilling jar is significantly affected by the combined influence of temperature-induced differential thermal expansion among components and changes in the rheological properties of hydraulic oil. These effects often lead to unstable jarring behavior or even complete failure to trigger jarring during stuck pipe events. Here, we propose a high-temperature degradation evaluation model for the throttling performance of the throttle valve in an HWD jar based on thermal expansion testing of individual components and high-temperature rheological experiments of hydraulic oil. By using the variation characteristics of the throttling passage geometry as a linkage, this model integrates the thermo-mechanical coupling of the valve body with flow field simulation. Numerical results reveal that fluid pressure decreases progressively along the flow path through the throttle valve, while flow velocity increases sharply at the channel entrance and exhibits mild fluctuations within the throttling region. Under fluid compression, the throttling areas of both the upper and lower valves expand to some extent, with their spatial distributions closely following the pressure gradient and decreasing gradually along the flow direction. Compared with ambient conditions, thermal expansion under elevated temperatures causes a more pronounced increase in throttling area. Additionally, as hydraulic oil viscosity decreases with increasing temperature, flow velocities and mass flow rates rise significantly, leading to a marked deterioration in the throttling performance of the drilling jar under high-temperature downhole conditions. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 8653 KB  
Article
Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force
by Lijun Chen, Yongqi Xie, Longzhu Han, Huifeng Kang and Hongwei Wu
Aerospace 2025, 12(9), 797; https://doi.org/10.3390/aerospace12090797 - 4 Sep 2025
Viewed by 630
Abstract
Loop heat pipes are efficiently two-phase heat transfer devices in the field of aircraft thermal management. To investigate the startup behavior and thermal instability of loop heat pipes under acceleration force, this study designed a novel loop heat pipe featuring two visual compensation [...] Read more.
Loop heat pipes are efficiently two-phase heat transfer devices in the field of aircraft thermal management. To investigate the startup behavior and thermal instability of loop heat pipes under acceleration force, this study designed a novel loop heat pipe featuring two visual compensation chambers and a visual condenser. Elevated acceleration experiments were conducted across four different heat loads, acceleration magnitudes, and directions. The heat load ranged from 30 W to 150 W, while the acceleration magnitude varied from 1 g to 15 g, with four acceleration directions (A, B, C, and D). The startup behavior, thermal instability, internal flow pattern, and phase distribution were analyzed systematically. The experimental results reveal the following: (i) The startup behaviors vary across the four acceleration directions. In direction A, startup is more difficult due to additional resistance induced by the acceleration force. In direction C, startup time generally decreases with increasing heat load and acceleration up to 7 g. The longest startup time observed is 372 s at 30 W and 11 g. (ii) At high heat load, periodic temperature fluctuations are observed, particularly in directions B and C. Simultaneously, the vapor–liquid phase interface in the condenser exhibits periodic back-and-forth movement. (iii) The visual DCCLHP exhibits a loss of temperature control under the combined influence of high heat loads and acceleration force, often accompanied by working fluid reverse flow, periodic temperature fluctuations, or wick dry-out. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

Back to TopTop