Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,202)

Search Parameters:
Keywords = fluctuating energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8377 KiB  
Article
Investigation of Wind Pressure Dynamics on Low-Rise Buildings in Sand-Laden Wind Environments
by Di Hu, Teng Zhang and Qiang Jin
Buildings 2025, 15(15), 2779; https://doi.org/10.3390/buildings15152779 - 6 Aug 2025
Abstract
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading [...] Read more.
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading to a slight reduction in average wind speed, while the increase in small-scale vortex energy enhances fluctuating wind speed. In the sand-laden wind field, the average wind pressure coefficient shows no significant change, whereas the fluctuating wind pressure coefficient increases markedly, particularly in the windward region of the building. Analysis of the skewness and kurtosis of wind pressure reveals that the non-Gaussian characteristics of wind pressure are amplified in the sand-laden wind, thereby elevating the risk of damage to the building envelope. Consequently, it is recommended that the design fluctuating wind load for envelopes and components of low-rise buildings in wind-sand regions be increased by 10% to enhance structural resilience. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 7775 KiB  
Article
Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid
by Laxman Solankee, Avinash Rai and Mukesh Kirar
Energies 2025, 18(15), 4171; https://doi.org/10.3390/en18154171 - 6 Aug 2025
Abstract
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for [...] Read more.
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

15 pages, 2022 KiB  
Article
Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry
by Helin Liu, Zhongliang Zhou, Zhiwei Wang, Jianhai Wang, Yu Wang, Lu Huang, Tianhuan Guo, Rongcheng Han and Yuqiang Jiang
Biosensors 2025, 15(8), 510; https://doi.org/10.3390/bios15080510 - 6 Aug 2025
Abstract
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to [...] Read more.
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to localized hyperthermia therapies. Traditional luminescent thermometric platforms often suffer from limitations such as high cytotoxicity and low photostability. Here, we synthesized Au-AgNCs@BSA via a one-pot aqueous reaction, achieving significantly enhanced photoluminescence quantum yields (PL QYs, up to 18%) and superior thermal responsiveness compared to monometallic counterparts. The dual-emissive Au-AgNCs@BSA exhibit a linear ratiometric fluorescence response to temperature fluctuations within the physiological range (20–50 °C), enabling accurate and concentration-independent thermometry in live cells. Time-resolved PL and Arrhenius analyses reveal two distinct emissive states and a high thermal activation energy (Ea = 199 meV), indicating strong temperature dependence. Silver doping increases radiative decay rates while maintaining low non-radiative losses, thus amplifying fluorescence intensity and thermal sensitivity. Owing to their small size, excellent photostability, and low cytotoxicity, these nanoclusters were applied to non-invasive intracellular temperature mapping, presenting a promising luminescent nanothermometer for real-time cellular thermogenesis monitoring and advanced bioimaging applications. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

30 pages, 2873 KiB  
Article
Quasar—A Process Variability-Aware Radiation Robustness Evaluation Tool
by Bernardo Borges Sandoval, Lucas Yuki Imamura, Ana Flávia D. Reis, Leonardo Heitich Brendler, Rafael B. Schvittz and Cristina Meinhardt
Electronics 2025, 14(15), 3131; https://doi.org/10.3390/electronics14153131 - 6 Aug 2025
Abstract
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every [...] Read more.
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every configuration in which a Single Event Transient fault can propagate an error. The tool can handle ranges from small basic cells to median multi-gate circuits in a few seconds, speeding up the traditional fault injection mechanism based on a large number of electrical simulations. The tool’s workflow explores logical masking to reduce the design space exploration, i.e., reducing the necessary number of electrical simulations, as well as regression methods to speed up variability evaluations. Quasar already has shown the potential to provide useful results, and a prototype has also been published. This work presents a more polished and complete version of the tool, one that optimizes the tool’s search process and allows not only for a fast evaluation of the radiation robustness of a circuit, but also for an analysis of how fabrication process metrics impact this robustness, such as Work Function Fluctuation. Full article
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Macroeconomic Effects of Oil Price Shocks in the Context of Geopolitical Events: Evidence from Selected European Countries
by Mariola Piłatowska and Andrzej Geise
Energies 2025, 18(15), 4165; https://doi.org/10.3390/en18154165 - 6 Aug 2025
Abstract
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as [...] Read more.
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as threats to public health and an increase in regional conflicts, special attention has been paid to the geopolitical context as an additional driver of oil price fluctuations. This study examines the relationship between oil price changes and GDP growth and other macroeconomic variables from the perspective of the vulnerability of oil-importing and oil-exporting countries to unexpected oil price shocks, driven by tense geopolitical events, in three European countries (Norway, Germany, and Poland). We apply the Structural Vector Autoregressive (SVAR) model and orthogonalized impulse response functions, based on quarterly data, in regard to two samples: the first spans 1995Q1–2019Q4 (pre-2020 sample), with relatively gradual changes in oil prices, and the second spans 1995Q1–2024Q2 (whole sample), with sudden fluctuations in oil prices due to geopolitical developments. A key finding of this research is that vulnerability to unpredictable oil price shocks related to geopolitical tensions is higher than in regard to expected gradual changes in oil prices, both in oil-importing and oil-exporting countries. Different causality patterns and stronger responses in regard to GDP growth during the period, including in regard to tense geopolitical events in comparison to the pre-2020 sample, lead to the belief that economies are not more resilient to oil price shocks as has been suggested by some studies, which referred to periods that were not driven by geopolitical events. Our research also suggests that countries implementing policies to reduce oil dependency and promote investment in alternative energy sources are better equipped to mitigate the adverse effects of oil price shocks. Full article
(This article belongs to the Special Issue Energy and Environmental Economic Theory and Policy)
Show Figures

Figure 1

31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

34 pages, 606 KiB  
Article
Role of Thermal Fluctuations in Nucleation of Three-Flavor Quark Matter
by Mirco Guerrini, Giuseppe Pagliara, Andrea Lavagno and Alessandro Drago
Universe 2025, 11(8), 258; https://doi.org/10.3390/universe11080258 - 5 Aug 2025
Abstract
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed [...] Read more.
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed that the flavor composition is locally fixed during the formation of the first seed of deconfined quark matter, since a weak interaction acts too slowly to re-equilibrate flavors. However, the matter composition fluctuates around its average equilibrium values at the typical temperatures of high-energy astrophysical processes. Here, we extend our previous two-flavor nucleation formalism to a three-flavor case. We develop a thermodynamic framework incorporating finite-size effects and thermal fluctuations in the local composition to compute the nucleation probability as the product of droplet formation and composition fluctuation rates. Moreover, we discuss the role of color superconductivity in nucleation, arguing that it can play a role only in systems larger than the typical coherence length of diquark pairs. We found that thermal fluctuations in the matter composition led to lowering the potential barrier between the metastable hadronic phase and the stable quark phase. Moreover, the formation of diquark pairs reduced the critical radius and thus the potential barrier in the low baryon density and temperature regime. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

21 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Support-Vector-Regression-Based Intelligent Control Strategy for DFIG Wind Turbine Systems
by Farhat Nasim, Shahida Khatoon, Ibraheem Nasiruddin, Mohammad Shahid, Shabana Urooj and Basel Bilal
Machines 2025, 13(8), 687; https://doi.org/10.3390/machines13080687 - 5 Aug 2025
Abstract
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause [...] Read more.
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause power oscillations, rotor speed fluctuations, and voltage instability. Traditional proportional–integral (PI) controllers struggle with such nonlinear, rapidly changing scenarios. A control approach utilizing support vector regression (SVR) is proposed for the DFIG wind turbine system. The SVR controller manages both active and reactive power by simultaneously controlling the rotor- and grid-side converters (RSC and GSC). Simulations under a sudden wind speed variation from 10 to 12 m per second show the SVR approach reduces settling time significantly (up to 70.3%), suppresses oscillations in rotor speed, torque, and power output, and maintains over 97% DC-link voltage stability. These improvements enhance power quality, reliability, and system performance, demonstrating the SVR controller’s superiority over conventional PI methods for variable-speed wind energy systems. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

24 pages, 4384 KiB  
Article
Untargeted Metabolomic Identifies Potential Seasonal Biomarkers of Semen Quality in Duroc Boars
by Notsile H. Dlamini, Serge L. Kameni and Jean M. Feugang
Biology 2025, 14(8), 995; https://doi.org/10.3390/biology14080995 (registering DOI) - 4 Aug 2025
Abstract
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) [...] Read more.
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) to identify metabolites and metabolic pathways associated with semen quality during the summer and winter months. Semen samples were collected from mature Duroc boars at a commercial boar stud and classified as Passed or Failed based on motility and morphology. SP from five samples per group was analyzed using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In total, 373 metabolites were detected in positive ion mode and 478 in negative ion mode. Several differentially expressed metabolites (DEMs) were identified, including ergothioneine, indole-3-methyl acetate, and avocadyne in the summer, as well as LysoPC, dopamine, and betaine in the winter. These metabolites are associated with key sperm functions, including energy metabolism, antioxidant defense, and capacitation. KEGG pathway analysis indicated enrichment in starch and sucrose metabolism, pyrimidine metabolism, and amino acid metabolism across the seasons. Overall, the results reveal that SP metabolomic profiles vary with the season, thereby influencing semen quality. The identified metabolites may serve as potential biomarkers for assessing semen quality and enhancing reproductive efficiency in swine production. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

26 pages, 4116 KiB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 47
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

23 pages, 1517 KiB  
Article
Physics-Informed Neural Network Enhanced CFD Simulation of Two-Dimensional Green Ammonia Synthesis Reactor
by Ran Xu, Shibin Zhang, Fengwei Rong, Wei Fan, Xiaomeng Zhang, Yunlong Wang, Liang Zan, Xu Ji and Ge He
Processes 2025, 13(8), 2457; https://doi.org/10.3390/pr13082457 - 3 Aug 2025
Viewed by 136
Abstract
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was [...] Read more.
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was developed, and a multiscale simulation approach combining computational fluid dynamics (CFD) with physics-informed neural networks (PINNs) employed. The simulation results demonstrate that the majority of fluid flows axially through the catalyst beds, leading to significantly higher temperatures in the upper bed regions. The reactor exhibits excellent heat exchange performance, ensuring effective preheating of the feed gas. High-pressure zones are concentrated near the top and bottom gas outlets, while the ammonia mole fraction approaches 100% near the bottom outlet, confirming superior conversion efficiency. By integrating PINNs, the prediction accuracy was substantially improved, with flow field errors in the catalyst beds below 4.5% and ammonia concentration prediction accuracy above 97.2%. Key reaction kinetic parameters (pre-exponential factor k0 and activation energy Ea) were successfully inverted with errors within 7%, while computational efficiency increased by 200 times compared to traditional CFD. The proposed CFD–PINN integrated framework provides a high-fidelity and computationally efficient simulation tool for green ammonia reactor design, particularly suitable for scenarios with fluctuating hydrogen supply. The reactor design reduces energy per unit ammonia and improves conversion efficiency. Its radial flow configuration enhances operational stability by damping feed fluctuations, thereby accelerating green hydrogen adoption. By reducing fossil fuel dependence, it promotes industrial decarbonization. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 239
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

Back to TopTop