Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = flexible stretchable electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6415 KiB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Viewed by 370
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

33 pages, 7442 KiB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Viewed by 599
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

15 pages, 3259 KiB  
Article
Inkjet-Printed Flexible Piezoelectric Sensor for Large Deformation Applications
by Giulia Mecca, Roberto Bernasconi, Valentina Zega, Raffaella Suriano, Marco Menegazzo, Gianlorenzo Bussetti, Alberto Corigliano and Luca Magagnin
Technologies 2025, 13(5), 206; https://doi.org/10.3390/technologies13050206 - 17 May 2025
Viewed by 666
Abstract
Next-generation flexible, soft, and stretchable sensors and electronic devices are conquering the technological scene due to their extremely innovative applications. Especially when produced via innovative technologies like additive manufacturing (AM) and/or inkjet printing (IJP), they represent an undeniable strategic asset for Industry 5.0. [...] Read more.
Next-generation flexible, soft, and stretchable sensors and electronic devices are conquering the technological scene due to their extremely innovative applications. Especially when produced via innovative technologies like additive manufacturing (AM) and/or inkjet printing (IJP), they represent an undeniable strategic asset for Industry 5.0. Within the growing sensor market, they offer advantages in terms of sensitivity and maximum sensing range. In addition, the use of AM/IJP reduces material waste, enhances scalability, and lowers cost production. In the present work, the design and fabrication of a highly flexible inkjet-printed piezoelectric sensor on top of a thin highly flexible polyimide substrate are presented. The silver top and bottom electrodes were inkjet-printed together with a P(VDF-TrFE) active layer with a nominal thickness of 3 μm which is located between them. The experimental results demonstrate that, even in extreme bending conditions and at different bending speeds, the fabricated sensors are able to maintain their performance without mechanical delamination, giving a stable and repeatable output peak-to-peak signal of 850 mV under cyclic bending. The material combination and the IJP-based fabrication technique employed for the first time in this work to produce highly flexible sensors represent a promising novelty in terms of both sensor performance and customization possibilities. Full article
Show Figures

Figure 1

15 pages, 7242 KiB  
Article
Development of 3D-Formed Textile-Based Electrodes with Flexible Interconnect Ribbon
by Paula Veske-Lepp, Glenn Van Steenkiste, Svea Thienpondt, Joris Cools, Herbert De Pauw and Frederick Bossuyt
Sensors 2025, 25(2), 414; https://doi.org/10.3390/s25020414 - 12 Jan 2025
Viewed by 3168
Abstract
The integration of electronics into textiles has gained considerable attention in recent years, due to the development and high demand of wearable and flexible electronics. One of the promising fields is healthcare, which often involves the utilization of textile-based electrodes. These electrodes often [...] Read more.
The integration of electronics into textiles has gained considerable attention in recent years, due to the development and high demand of wearable and flexible electronics. One of the promising fields is healthcare, which often involves the utilization of textile-based electrodes. These electrodes often offer advantages such as conformability, breathability, and comfort. This article presents the development of 3D-formed textile-based electrodes together with a narrow fabric-based interconnect system. This study showcases the methods and materials for the fabrication of the textile-based electrodes and the interconnect system, including a durability assessment, by performing standardized washing (ISO 6330-2012) and user tests. The results demonstrated that the developed 3D-formed textile-based electrodes and stretchable interconnect system are durable and effective for wearable applications, maintaining performance under extensive washing. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

10 pages, 9944 KiB  
Article
Optimizing Stretchability and Electrical Stability in Bilayer-Structured Flexible Liquid Metal Composite Electrodes
by Min-Gi Kim, Kun-Woo Nam, Won-Jin Kim and Sung-Hoon Park
Micromachines 2024, 15(12), 1467; https://doi.org/10.3390/mi15121467 - 30 Nov 2024
Viewed by 1270
Abstract
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer [...] Read more.
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g., stretching or bending) and limited elongation due to incomplete integration of the liquid metal within the elastomer matrix. To address these limitations, we introduced a bilayer structure into liquid metal composites, comprising a lower polydimethylsiloxane (PDMS) layer and an upper PDMS-liquid metal mixed layer. In the mixed layer, the liquid metal precipitates, forming a conductive network spanning both layers. This bilayer composite structure demonstrated significantly improved stretchability and elongation compared to pure PDMS or single-layer composites. Additionally, by adjusting the size and content of the liquid metal particles, we optimized the composite’s mechanical and electrical properties. Under optimal conditions, spherical liquid metal particles deform into elliptical shapes under tensile stress, increasing conductive pathways and reducing electrical resistance. The combined effects of the bilayer structure and particle shape deformation enhanced the composite’s stretchability and elongation, supporting its potential for flexible electronics applications. Full article
Show Figures

Figure 1

21 pages, 5645 KiB  
Article
Design, Testing, and Validation of a Soft Robotic Sensor Array Integrated with Flexible Electronics for Mapping Cardiac Arrhythmias
by Abdellatif Ait Lahcen, Michael Labib, Alexandre Caprio, Mohsen Annabestani, Lina Sanchez-Botero, Weihow Hsue, Christopher F. Liu, Simon Dunham and Bobak Mosadegh
Micromachines 2024, 15(11), 1393; https://doi.org/10.3390/mi15111393 - 18 Nov 2024
Cited by 2 | Viewed by 1741
Abstract
Cardiac mapping is a crucial procedure for diagnosing and treating cardiac arrhythmias. Still, current clinical techniques face limitations including insufficient electrode coverage, poor conformability to complex heart chamber geometries, and high costs. This study explores the design, testing, and validation of a 64-electrode [...] Read more.
Cardiac mapping is a crucial procedure for diagnosing and treating cardiac arrhythmias. Still, current clinical techniques face limitations including insufficient electrode coverage, poor conformability to complex heart chamber geometries, and high costs. This study explores the design, testing, and validation of a 64-electrode soft robotic catheter that addresses these challenges in cardiac mapping. A dual-layer flexible printed circuit board (PCB) was designed and integrated with sensors into a soft robotic sensor array (SRSA) assembly. Design considerations included flex PCB layout, routing, integration, conformity to heart chambers, sensor placement, and catheter durability. Rigorous SRSA in vitro testing evaluated the burst/leakage pressure, block force for electrode contact, mechanical integrity, and environmental resilience. For in vivo validation, a porcine model was used to demonstrate the successful deployment, conformability, and acquisition of electrograms in both the ventricles and atria. This catheter-deployable SRSA represents a meaningful step towards translating the integration of soft robotic actuators and stretchable electronics for clinical use, showcasing the unique mechanical and electrical performance that these designs enable. The high-density electrode array enabled rapid 2 s data acquisition with detailed spatial and temporal resolution, as illustrated by the clear and consistent cardiac signals recorded across all electrodes. The future of this work will lie in enabling high-density, anatomically conformable devices for detailed cardiac mapping to guide ablation therapy and other interventions. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

16 pages, 6720 KiB  
Article
Stretchable Ag/AgCl Nanowire Dry Electrodes for High-Quality Multimodal Bioelectronic Sensing
by Tianyu Wang, Shanshan Yao, Li-Hua Shao and Yong Zhu
Sensors 2024, 24(20), 6670; https://doi.org/10.3390/s24206670 - 16 Oct 2024
Cited by 3 | Viewed by 2403
Abstract
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with [...] Read more.
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with a flexible network of Ag/AgCl nanowires embedded in polydimethylsiloxane (PDMS). We compared the performance of the stretched Ag/AgCl nanowire electrode with commonly used commercial wet electrodes to measure electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) signals. All the signal-to-noise ratios (SNRs) of the as-fabricated or stretched (50% tensile strain) Ag/AgCl nanowire electrodes are higher than that measured by commercial wet electrodes as well as other dry electrodes. The evaluation of ECG signal quality through waveform segmentation, the signal quality index (SQI), and heart rate variability (HRV) reveal that both the as-fabricated and stretched Ag/AgCl nanowire electrode produce high-quality signals similar to those obtained from commercial wet electrodes. The stretchable electrode exhibits high sensitivity and dependability in measuring EMG and EEG data, successfully capturing EMG signals associated with muscle activity and clearly recording α-waves in EEG signals during eye closure. Our stretchable dry electrode shows enhanced comfort, high sensitivity, and convenience for curved surface biosignal monitoring in clinical contexts. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 11151 KiB  
Article
Electrical Impedance Tomography-Based Electronic Skin for Multi-Touch Tactile Sensing Using Hydrogel Material and FISTA Algorithm
by Zhentao Jiang, Zhiyuan Xu, Mingfu Li, Hui Zeng, Fan Gong and Yuke Tang
Sensors 2024, 24(18), 5985; https://doi.org/10.3390/s24185985 - 15 Sep 2024
Cited by 2 | Viewed by 1851
Abstract
Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of [...] Read more.
Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of the skin, ensuring the stretchability and elasticity of the skin’s interior. However, the image quality reconstructed by EIT technology has deteriorated in multi-touch identification, where it is challenging to clearly reflect the number of touchpoints and accurately size the touch areas. This paper proposed an EIT-based flexible tactile sensor that employs self-made hydrogel material as the primary sensing medium. The sensor’s structure, fabrication process, and tactile imaging principle were elaborated. To improve the quality of image reconstruction, the fast iterative shrinkage-thresholding algorithm (FISTA) was embedded into the EIDORS toolkit. The performances of the e-skin in aspects of assessing the touching area, quantitative force sensing and multi-touch identification were examined. Results showed that the mean intersection over union (MIoU) of the reconstructed images was improved up to 0.84, and the tactile position can be accurately imaged in the case of the number of the touchpoints up to seven (larger than two to four touchpoints in existing studies), proving that the combination of the proposed sensor and imaging algorithm has high sensitivity and accuracy in multi-touch tactile sensing. The presented e-skin shows potential promise for the application in complex human–robot interaction (HRI) environments, such as prosthetics and wearable devices. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 3948 KiB  
Article
Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole
by Partha Sarati Das, Daniella Skaf, Lina Rose, Fatemeh Motaghedi, Tricia Breen Carmichael, Simon Rondeau-Gagné and Mohammed Jalal Ahamed
Sensors 2024, 24(9), 2944; https://doi.org/10.3390/s24092944 - 6 May 2024
Cited by 6 | Viewed by 3611
Abstract
Gait phase monitoring wearable sensors play a crucial role in assessing both health and athletic performance, offering valuable insights into an individual’s gait pattern. In this study, we introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a micropatterned polydimethylsiloxane dielectric [...] Read more.
Gait phase monitoring wearable sensors play a crucial role in assessing both health and athletic performance, offering valuable insights into an individual’s gait pattern. In this study, we introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a micropatterned polydimethylsiloxane dielectric layer placed between screen-printed silver electrodes. The sensor demonstrated inherent stretchability and durability, even when the electrode was bent at a 45-degree angle, it maintained an electrode resistance of approximately 3 Ω. This feature is particularly advantageous for gait monitoring applications. Furthermore, the fabricated flexible capacitive pressure sensor exhibited higher sensitivity and linearity at both low and high pressure and displayed very good stability. Notably, the sensors demonstrated rapid response and recovery times for both under low and high pressure. To further explore the capabilities of these new sensors, they were successfully tested as insole-type pressure sensors for real-time gait signal monitoring. The sensors displayed a well-balanced combination of sensitivity and response time, making them well-suited for gait analysis. Beyond gait analysis, the proposed sensor holds the potential for a wide range of applications within biomedical, sports, and commercial systems where soft and conformable sensors are preferred. Full article
(This article belongs to the Special Issue Intelligent Wearable Sensor-Based Gait and Movement Analysis)
Show Figures

Figure 1

13 pages, 9646 KiB  
Article
Design, Fabrication and Evaluation of a Stretchable High-Density Electromyography Array
by Rejin John Varghese, Matteo Pizzi, Aritra Kundu, Agnese Grison, Etienne Burdet and Dario Farina
Sensors 2024, 24(6), 1810; https://doi.org/10.3390/s24061810 - 11 Mar 2024
Cited by 10 | Viewed by 5437
Abstract
The adoption of high-density electrode systems for human–machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and [...] Read more.
The adoption of high-density electrode systems for human–machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human–machine interfaces. Full article
(This article belongs to the Special Issue EMG Sensors and Signal Processing Technologies)
Show Figures

Figure 1

10 pages, 2564 KiB  
Article
Stretchable Nanofiber-Based Felt as a String Electrode for Potential Use in Wearable Glucose Biosensors
by Bianca Seufert, Sylvia Thomas and Arash Takshi
Sensors 2024, 24(4), 1283; https://doi.org/10.3390/s24041283 - 17 Feb 2024
Cited by 5 | Viewed by 1810
Abstract
Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. [...] Read more.
Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. This paper presents an electrospun nanofiber mesh-based (NF-Felt) string electrode with a conducting polymer coating for an electrochemical enzymatic glucose sensor. The surface area of a nanofiber matrix is a key physical property for enhanced glucose oxidase (GOx) enzyme binding for the development of an electrochemical biosensor. A morphological characterization of the NF-Felt string electrode was performed using scanning electron microscopy (SEM) and compared with a commercially available cotton–polyester (Cot-Pol) string coated with the same conducting polymer. The results from stress–strain testing demonstrated high stretchability of the NF-Felt string. Also, the electrochemical characterization results showed that the NF-Felt string electrode was able to detect a glucose concentration in the range between 0.0 mM and 30.0 mM with a sensitivity of 37.4 μA/mM·g and a detection limit of 3.31 mM. Overall, with better electrochemical performance and incredible flexibility, the NF-Felt-based string electrode is potentially more suitable for designing wearable biosensors for the detection of glucose in sweat. Full article
(This article belongs to the Special Issue Novel Sensors Based on Nanotechnology and Their Application)
Show Figures

Figure 1

13 pages, 3087 KiB  
Article
Stretchable, Flexible, Breathable, Self-Adhesive Epidermal Hand sEMG Sensor System
by Kerong Yang, Senhao Zhang, Xuhui Hu, Jiuqiang Li, Yingying Zhang, Yao Tong, Hongbo Yang and Kai Guo
Bioengineering 2024, 11(2), 146; https://doi.org/10.3390/bioengineering11020146 - 1 Feb 2024
Cited by 5 | Viewed by 2248
Abstract
Hand function rehabilitation training typically requires monitoring the activation status of muscles directly related to hand function. However, due to factors such as the small surface area for hand-back electrode placement and significant skin deformation, the continuous real-time monitoring of high-quality surface electromyographic [...] Read more.
Hand function rehabilitation training typically requires monitoring the activation status of muscles directly related to hand function. However, due to factors such as the small surface area for hand-back electrode placement and significant skin deformation, the continuous real-time monitoring of high-quality surface electromyographic (sEMG) signals on the hand-back skin still poses significant challenges. We report a stretchable, flexible, breathable, and self-adhesive epidermal sEMG sensor system. The optimized serpentine structure exhibits a sufficient stretchability and filling ratio, enabling the high-quality monitoring of signals. The carving design minimizes the distribution of connecting wires, providing more space for electrode reservation. The low-cost fabrication design, combined with the cauterization design, facilitates large-scale production. Integrated with customized wireless data acquisition hardware, it demonstrates the real-time multi-channel sEMG monitoring capability for muscle activation during hand function rehabilitation actions. The sensor provides a new tool for monitoring hand function rehabilitation treatments, assessing rehabilitation outcomes, and researching areas such as prosthetic control. Full article
Show Figures

Figure 1

10 pages, 6909 KiB  
Communication
Highly Stretchable Thermoplastic Polyurethane Separators for Li-Ion Batteries Based on Non-Solvent-Induced Phase Separation Method
by Tae Hyung Kim, MinSu Kim, Eun Ji Kim, Minu Ju, Ji Soo Kim and Seung Hee Lee
Polymers 2024, 16(3), 357; https://doi.org/10.3390/polym16030357 - 29 Jan 2024
Cited by 2 | Viewed by 3063
Abstract
The growing interest in wearable and portable devices has stimulated the need for flexible and stretchable lithium-ion batteries (LiBs). A crucial component in these batteries is the separator, which provides a pathway for Li-ion transfer and prevents electrode contact. In a flexible and [...] Read more.
The growing interest in wearable and portable devices has stimulated the need for flexible and stretchable lithium-ion batteries (LiBs). A crucial component in these batteries is the separator, which provides a pathway for Li-ion transfer and prevents electrode contact. In a flexible and stretchable LiB, the separator must exhibit stretchability and elasticity akin to its existing counterparts. Here, we developed a non-modified thermoplastic polyurethane (TPU) separator using the non-solvent induced phase separation (NIPS) technique. We compared their performance with commercially available polypropylene (PP) separators. Our results demonstrate that TPU separators exhibit superior elasticity based on repeated stretch/release tests with excellent thermal stability and electrolyte wettability. Furthermore, our findings confirm that TPU separators, even after being repeatedly stretched and released, can function effectively without severe damage in a fabricated coin cell LiB with high oxidative stability, as evidenced by linear sweep voltammetry, like commercially available separators. Full article
Show Figures

Figure 1

11 pages, 5812 KiB  
Article
Flexible Finely and Directly Patternable Liquid Metal Electrodes via Selective Surface Wetting Technique
by Seong Ju Park and Chanwoo Yang
Coatings 2023, 13(11), 1922; https://doi.org/10.3390/coatings13111922 - 10 Nov 2023
Cited by 2 | Viewed by 1859
Abstract
Eutectic gallium–indium (EGaIn) is an ideal material for preparing flexible electrodes, but its high surface tension poses a challenge during deposition and patterning. Herein, we propose a laser-induced selective surface wetting technique (SSWT) to enable the facile and straightforward fabrication of flexible finely [...] Read more.
Eutectic gallium–indium (EGaIn) is an ideal material for preparing flexible electrodes, but its high surface tension poses a challenge during deposition and patterning. Herein, we propose a laser-induced selective surface wetting technique (SSWT) to enable the facile and straightforward fabrication of flexible finely and directly patternable EGaIn liquid metal electrodes. Our proposed technique selectively controls the wettability of EGaIn by establishing a perfluorinated self-assembled monolayer on a zinc oxide nanorod array to impart superhydrophobicity and then inducing specific sites on the hydrophilized surface by ultraviolet (UV) pulsed laser ablation, thereby enabling fine patterning (linewidth, ~50 μm). Surface analysis of the effect of laser ablation was also performed to elucidate the mechanism of SSWT. The patterned EGaIn liquid metal electrode fabricated by SSWT exhibited superior flexibility, with a resistance change (ΔR/R0) of only 18.6% compared with a Ag thin film electrode, which showed a dramatic increase in ΔR/R0 to nearly 500% after 50,000 folding cycles at a peak strain of 2.5%. The simple and easily implementable liquid metal patterning technique proposed in this study may potentially be applied in the field of wearable and stretchable electronics, which requires extreme flexibility. Full article
(This article belongs to the Special Issue Laser-Assisted Coating Techniques and Surface Modifications)
Show Figures

Figure 1

13 pages, 4924 KiB  
Article
An Underwater Triboelectric Biomechanical Energy Harvester to Power the Electronic Tag of Marine Life
by Bo Liu, Taili Du, Xiaoyan Xu, Jianhua Liu, Peng Zhu, Linan Guo, Yuanzheng Li, Tianrun Wang, Yongjiu Zou, Hao Wang, Peng Xu, Peiting Sun and Minyi Xu
J. Mar. Sci. Eng. 2023, 11(9), 1766; https://doi.org/10.3390/jmse11091766 - 9 Sep 2023
Cited by 5 | Viewed by 2162
Abstract
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of [...] Read more.
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of marine life, ensuring a consistent power source for the implantable devices. The UF-TENG, which is watertight by the protection of a hydrophobic poly(tetrafluoroethylene) film, consists of high stretchable carbon black-silicone as electrode and silicone as a dielectric material. This innovative design enhances the UF-TENG’s adaptability and biocompatibility with marine organisms. The UF-TENG’s performance was rigorously assessed under various conditions. Experimental data highlight a peak output of 14 V, 0.43 μA and 38 nC, with a peak power of 2.9 μW from only one unit. Notably, its performance exhibited minimal degradation even after three weeks, showing its excellent robustness. Furthermore, the UF-TENG is promising in the self-powered sensing of the environmental parameter and the marine life movement. Finally, a continuous power supply of an underwater temperature is achieved by paralleling UF-TENGs. These findings indicate the broad potential of UF-TENG technology in powering implantable electronic tags. Full article
(This article belongs to the Special Issue Advanced Marine Energy Harvesting Technologies)
Show Figures

Figure 1

Back to TopTop