Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = flax gum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3403 KiB  
Article
Development of Foam Composites from Flax Gum-Filled Epoxy Resin
by Corentin Musa, Mohammed Zaidi, Michaël Depriester, Yamina Allouche, Naïm Naouar, Alain Bourmaud, Dominique Baillis and François Delattre
J. Compos. Sci. 2024, 8(7), 244; https://doi.org/10.3390/jcs8070244 - 27 Jun 2024
Cited by 4 | Viewed by 1535
Abstract
In the present work, an innovative range of foams based on flax gum-filled epoxy resin was developed, reinforced or not by flax fibers. Foams and composites with different gum and epoxy resin contents were produced and their mechanical and thermal performances were characterized. [...] Read more.
In the present work, an innovative range of foams based on flax gum-filled epoxy resin was developed, reinforced or not by flax fibers. Foams and composites with different gum and epoxy resin contents were produced and their mechanical and thermal performances were characterized. To enhance the organic flax gum filler’s cross-linking, we exploited the oxidized components’ reactivity with the amine hardener (isophorone diamine). We compared the materials obtained with those derived from the native components. The flax gum and fibers were primarily characterized by chemical analysis, NMR, and FTIR to evaluate the mild oxidation of the native materials. The formation of chemical bonds between the oxidized polymer chains, epoxy resin, and hardener was evidenced by FTIR, and the materials were then studied by SEM and X-ray computed micro-tomography (CT) and submitted to mechanical and thermal tests. The relevance of the oxidation treatment was highlighted through a significant increase in density and mechanical performance (+36% and +81%, respectively, for the 100% flax gum material). The positive effect of the flax fibers on homogeneity evidenced through micro-CT analysis was also clearly addressed. This set of promising results paves the way for the future development of fully flax-based insulation composite materials. Full article
(This article belongs to the Special Issue Polymeric Composites Reinforced with Natural Fibers and Nanofillers)
Show Figures

Graphical abstract

12 pages, 725 KiB  
Article
The Impacts of Standardized Flaxseed Meal (XanFlax) on the Physicochemical, Textural, and Sensory Properties of Muffins
by Ju Hui Lee, Youn Young Shim, Martin J. T. Reaney and Jin A Yoon
Foods 2023, 12(22), 4085; https://doi.org/10.3390/foods12224085 - 10 Nov 2023
Cited by 5 | Viewed by 1937
Abstract
Flaxseed is becoming increasingly popular as a superfood due to its many health benefits. While flaxseed is considered an oilseed, flaxseed meal (the by-product of flaxseed oil extraction) also contains many nutritional compounds not found in the oil. This study explored the use [...] Read more.
Flaxseed is becoming increasingly popular as a superfood due to its many health benefits. While flaxseed is considered an oilseed, flaxseed meal (the by-product of flaxseed oil extraction) also contains many nutritional compounds not found in the oil. This study explored the use of a Canadian flaxseed (Linum usitatissimum L.) meal product to fortify bakery foods and improve their nutritional properties. Muffins were made using a control recipe as well as four different formulations that included varying amounts of a standardized flaxseed meal supplement called XanFlax (5, 10, 20, and 40%). The physicochemical properties of the muffins, including their texture, color, sugar content, pH, specific gravity, loss rate, and moisture, were evaluated. Additionally, the sensory attributes contributing to muffin quality were thoroughly examined. The lightness (L*) and yellowness (b*) of the muffins, which were highest in the control group at 82.22 and 34.69, respectively, decreased as the amount of XanFlax increased (p < 0.05). Additionally, the redness (a*) of the muffins increased as the amount of XanFlax increased (p < 0.05). The muffins’ sugar content (2.00 brix%) remained consistent across all treatments and controls except for those prepared with 20% XanFlax (2.17 brix%). As the amount of XanFlax powder increased, the pH of the muffins increased significantly. The moisture content in the muffins was highest at 23.71 ± 0.79% in the 10% XanFlax treatment and lowest at 22.06 ± 0.30% in the 40% XanFlax treatment. The muffins enriched with 5% XanFlax had an average height of 5.35 cm and volume of 131.33 mL, surpassing the results for the muffins made with other formulas (p < 0.05). Additionally, the cohesiveness and gumminess of the muffins tended to increase with the addition of XanFlax. The most favorable attributes, namely the appearance, flavor, taste, texture, and overall acceptance, were consistently associated with the 5% and 10% XanFlax treatments (p < 0.05). This study marks the first time a standardized flaxseed gum product, XanFlax, has been described in a functional baking application. Full article
Show Figures

Figure 1

14 pages, 3111 KiB  
Article
Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography
by Mohammed Zaidi, Dominique Baillis, Naim Naouar, Michael Depriester and François Delattre
Materials 2023, 16(18), 6318; https://doi.org/10.3390/ma16186318 - 20 Sep 2023
Cited by 1 | Viewed by 1450
Abstract
The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate [...] Read more.
The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate the thermal and microstructural properties of new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal conductivity, while the composite’s microstructure is characterized using X-ray Computed Tomography and image analysis. The local thermal conductivity of the flax fibers and the flaxseed gum matrix is identified by using effective thermal conductivity measurements and analytical models. This study provides valuable insight into the thermal behavior of these biocomposites with varying compositions of flaxseed gum and epoxy resin. The results obtained could not only contribute to a better understanding the thermal properties of these materials but are also of significant interest for advanced numerical modeling applications. Full article
(This article belongs to the Special Issue Thermal and Mechanical Properties of Porous Materials and Composites)
Show Figures

Figure 1

17 pages, 1909 KiB  
Article
The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction
by Justyna Bochnak-Niedźwiecka, Urszula Szymanowska and Michał Świeca
Appl. Sci. 2022, 12(14), 7159; https://doi.org/10.3390/app12147159 - 15 Jul 2022
Cited by 10 | Viewed by 2412
Abstract
The functional beverages market is one of the fastest-growing sectors of functional food production. An innovative recipe for powdered fruit and vegetable drinks fortified with lentil proteins (AGF) and stabilized with flax seed gums (FSG) was developed. The study focused on the analysis [...] Read more.
The functional beverages market is one of the fastest-growing sectors of functional food production. An innovative recipe for powdered fruit and vegetable drinks fortified with lentil proteins (AGF) and stabilized with flax seed gums (FSG) was developed. The study focused on the analysis of potentially bioaccessible fractions from the produced beverages in terms of their antioxidant, antiproliferative activities and physicochemical properties. The contents of bioactive components were tailored by the incorporation of lyophilized fruits and vegetables, the FSG and the AGF. Digestion in vitro effectively released phenolics from all matrices. The highest contents of potentially bioavailable polyphenols were recorded for the AGF based beverages enriched with 5% of FSG and green-leafy vegetables (58 mg/100 mL) and those with lyophilized fruit (54 mg/100 mL). The reducing power of the beverages was mainly affected by the presence of the AGF, while the FSG and lyophilized fruit improved the chelating power. The digests applied in the concentrations mimicking physiological concentrations showed antiproliferative properties against gastric and colon adenocarcinoma—they seemed to be tailored by bioactive peptides and phenolics, respectively. The addition of the FSG improved the stability of the beverages increasing the time required for a reduction of 20% of the initial optical density by 16- and 28-times in the beverages without additives or enriched with vegetables. Both, the AGF and FSG stabilize the beverages after rehydration and are sources of bioaccessible antioxidant and anticancer components, which create their functionality. Full article
Show Figures

Figure 1

15 pages, 946 KiB  
Article
Antioxidant Content and Antioxidant Capacity of the Protein-Rich Powdered Beverages Enriched with Flax Seeds Gum
by Justyna Bochnak-Niedźwiecka, Urszula Szymanowska, Ireneusz Kapusta and Michał Świeca
Antioxidants 2022, 11(3), 582; https://doi.org/10.3390/antiox11030582 - 18 Mar 2022
Cited by 13 | Viewed by 3429
Abstract
Powdered beverages produced from dried fruit and vegetables are new products whose properties may be tailored by adding efficient nutrients and functional ingredients. The analyses of low-molecular antioxidants and antioxidant properties as well as nutrient content and digestibility were tested in beverages enriched [...] Read more.
Powdered beverages produced from dried fruit and vegetables are new products whose properties may be tailored by adding efficient nutrients and functional ingredients. The analyses of low-molecular antioxidants and antioxidant properties as well as nutrient content and digestibility were tested in beverages enriched with lentil proteins (AGF) and flaxseed gum (FSG). A replacement of sprouted lentil flour with the AGF deteriorated the phenolic content. As a main source of phenolics and vitamin C, lyophilized parsley leaves and broccoli sprouts were recognized. (There was no clear effect of the FGS.) The highest content of phenolics was determined in the beverages with these additives without the AGS (c.a. 125 μg/g). The AGF significantly improved the ability to quench ABTS radicals and reduce power. The best results were for the beverages without the FSG. (The effect was enhanced by lyophilized fruit and green vegetables.) The lowest chelating power and ability to quench hydroxyl radicals were in the beverages based on the AGF (improvement by the FSG and green vegetables). The tailoring of beverages’ recipes significantly increased protein content and did not affect nutrient digestibility. The modifications allow obtaining the beverages exhibiting multidirectional antioxidant properties, being a source of easily bioaccessible starch and proteins. Full article
Show Figures

Figure 1

10 pages, 231 KiB  
Article
Food Puree for Seniors: The Effects of XanFlax as a New Thickener on Physicochemical and Antioxidant Properties
by Chang Geun Lee, Youn Young Shim, Martin J. T. Reaney and Hye-Ja Chang
Foods 2021, 10(5), 1100; https://doi.org/10.3390/foods10051100 - 15 May 2021
Cited by 18 | Viewed by 3125
Abstract
With the increasing number of older adults, the elderly-friendly food market has been rapidly growing. The physicochemical and antioxidant properties of soymilk-based banana-blueberry-puree with and without flaxseed-based (XanFlax) and xanthan-gum-based (brand G) thickeners were compared as a potential senior food. Samples included a [...] Read more.
With the increasing number of older adults, the elderly-friendly food market has been rapidly growing. The physicochemical and antioxidant properties of soymilk-based banana-blueberry-puree with and without flaxseed-based (XanFlax) and xanthan-gum-based (brand G) thickeners were compared as a potential senior food. Samples included a control, three treatments with XanFlax (1%, 3%, and 5%), and three treatments with brand G (1.35%, 2.7%, and 5.4%). The physicochemical (color, sugar, salinity, pH, viscosity, and hardness) and antioxidant properties [DPPH, ABTS, reducing power (RP), and total polyphenol content (TPC)] were compared. The chromaticity values (L*, a*, and b*) and pHs were similar among all treatments and the control, but the salinity of brand G showed statistical differences (p < 0.05). All samples met the Korean Industrial Standards for senior foods in terms of viscosity and hardness, while samples with brand G were harder and more viscous than those with XanFlax and the control (p < 0.001). XanFlax samples had greater ABTS radical scavenging activities than the control and brand G samples (p < 0.001). Although, the developed puree can be a possible senior food product without the addition of thickeners, XanFlax might be applied as a non-xanthan gum-based viscosity thickener with antioxidant functions for senior-friendly foods. Full article
(This article belongs to the Special Issue Optimised Food Products for Elderly Populations)
Show Figures

Graphical abstract

13 pages, 2358 KiB  
Article
Flaxseed Gum Solution Functional Properties
by Yingxue Hu, Youn Young Shim and Martin J.T. Reaney
Foods 2020, 9(5), 681; https://doi.org/10.3390/foods9050681 - 25 May 2020
Cited by 56 | Viewed by 6678
Abstract
Flaxseed gum (FG) is a by-product of flax (Linum usitatissimum L.) meal production that is useful as a food thickener, emulsifier, and foaming agent. FG is typically recovered by hot-water extraction from flaxseed hull or whole seed. However, FG includes complex polymer [...] Read more.
Flaxseed gum (FG) is a by-product of flax (Linum usitatissimum L.) meal production that is useful as a food thickener, emulsifier, and foaming agent. FG is typically recovered by hot-water extraction from flaxseed hull or whole seed. However, FG includes complex polymer structures that contain bioactive compounds. Therefore, extraction temperature can play an important role in determining its functional properties, solution appearance, and solution stability during storage. These characteristics of FG, including FG quality, determine its commercial value and utility. In this study, FG solution functional properties and storage stability were investigated for solutions prepared at 70 and 98 °C. Solutions of FG prepared at 98 °C had lower initial viscosity than solutions extracted at 70 °C; though the viscosity of these solutions was more stable during storage. Solutions prepared by extraction at both tested temperatures exhibited similar tolerance to 0.1 mol/L salt addition and freeze-thaw cycles. Moreover, the higher extraction temperature produced a FG solution with superior foaming and emulsification properties, and these properties were more stable with storage. Foams and emulsions produced from FG extracted at higher temperatures also had better stability. FG extracted at 98 °C displayed improved stability and consistent viscosity, foamability, and emulsification properties in comparison to solutions prepared at 70 °C. Therefore, the FG solution extracted at 98 °C had more stable properties and, potentially, higher commercial value. This result indicates that FG performance as a commercial food additive can influence food product quality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

10 pages, 1153 KiB  
Article
Antioxidant Properties of Water-Soluble Gum from Flaxseed Hulls
by Fatma Bouaziz, Mohamed Koubaa, Francisco J. Barba, Shahin Roohinejad and Semia Ellouz Chaabouni
Antioxidants 2016, 5(3), 26; https://doi.org/10.3390/antiox5030026 - 2 Aug 2016
Cited by 45 | Viewed by 9015
Abstract
Soluble flaxseed gum (SFG) was extracted from flax (Linum usitatissimum) hulls using hot water, and its functional groups and antioxidant properties were investigated using infrared spectroscopy and different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), reducing power capacity, and β-carotene bleaching [...] Read more.
Soluble flaxseed gum (SFG) was extracted from flax (Linum usitatissimum) hulls using hot water, and its functional groups and antioxidant properties were investigated using infrared spectroscopy and different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), reducing power capacity, and β-carotene bleaching inhibition assay), respectively. The antioxidant capacity of SFG showed interesting DPPH radical-scavenging capacity (IC50 SFG = 2.5 mg·mL−1), strong ABTS radical scavenging activity (% inhibition ABTS = 75.6% ± 2.6% at 40 mg·mL−1), high reducing power capacity (RPSFG = 5 mg·mL−1), and potent β-carotene bleaching inhibition activity (IC50 SFG = 10 mg·mL−1). All of the obtained results demonstrate the promising potential use of SFG in numerous industrial applications, and a way to valorize flaxseed hulls. Full article
Show Figures

Graphical abstract

Back to TopTop