Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = flat-pebble conglomerate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6185 KB  
Article
Early Triassic (Griesbachian) Deposits of High-Energy Events at the Northwestern Upper Yangtze Region, China
by Dan Qiao, Xiong Duan and Zhiqiang Shi
Minerals 2023, 13(9), 1222; https://doi.org/10.3390/min13091222 - 17 Sep 2023
Viewed by 1787
Abstract
Following the latest Permian mass extinction (LPME), the ocean experienced turbulent conditions due to elevated temperatures during the Griesbachian (Early Triassic). These adverse conditions resulted in a prolonged delay in biotic recovery. However, the current understanding of the sedimentological responses of the ocean [...] Read more.
Following the latest Permian mass extinction (LPME), the ocean experienced turbulent conditions due to elevated temperatures during the Griesbachian (Early Triassic). These adverse conditions resulted in a prolonged delay in biotic recovery. However, the current understanding of the sedimentological responses of the ocean at that time to these adverse conditions remains incomplete. The Griesbachian harsh ocean conditions led to the formation of abnormal carbonate rocks (known as anachronistic facies) all around the world. These facies were influenced by a combination of environmental conditions, biotic factors, and actualistic sedimentological processes (e.g., waves and currents, sedimentation). However, the role of actualistic sedimentological processes in forming anachronistic facies during the Griesbachian has been underemphasized in the existing studies. In this research, we examine calcirudite beds, such as flat-pebble conglomerates, from Member 1 of the Feixianguan Formation across multiple sections, including Shangsi, Yudongzi, Dagouli, and Jianfeng in the Upper Yangtze Region. Our analysis is grounded in field investigations, thin-section observations, and the study of triggering mechanisms and formation processes. We identified and described five calcirudite beds (S1–S5) in the Shangsi section, two beds (D1–D2) in the Dagouli section, one at Jianfeng (J1), and one (Y1) in the Yudongzi section. Bed S1 features matrix-supported flat pebbles with a normal grading, interpreted as the result of a debris flow mass-transport process. Beds S2, S3, D1, and J1 contain large mud rip-up clasts, ooids, and bioclasts, suggesting a potential link with tsunami backwash. Beds S4, D2, and Y1 display hummocky cross-stratification and ‘chrysanthemum-shaped’ flat pebbles, indicating storm influence. The presence of vermicular limestones in Bed S5 suggests harsh marine environmental conditions. Collectively, this evidence suggests that high-energy oceanic conditions, including tsunamis and frequent storms, potentially influenced Early Triassic biotic recovery. Full article
Show Figures

Figure 1

18 pages, 14907 KB  
Article
Characterisation of the Susceptibility to Slope Movements in the Arribes Del Duero Natural Park (Spain)
by Leticia Merchán, Antonio Martínez-Graña, Carlos E. Nieto, Marco Criado and Teresa Cabero
Land 2023, 12(8), 1513; https://doi.org/10.3390/land12081513 - 29 Jul 2023
Cited by 8 | Viewed by 2288
Abstract
In recent decades, natural disasters have increased drastically, with slope movements being the most damaging geological hazard, causing thousands of deaths and considerable economic losses. To reduce these losses, it is necessary to carry out cartographies that spatially delimit these risks, preventing and [...] Read more.
In recent decades, natural disasters have increased drastically, with slope movements being the most damaging geological hazard, causing thousands of deaths and considerable economic losses. To reduce these losses, it is necessary to carry out cartographies that spatially delimit these risks, preventing and mitigating the effects through the analysis of susceptibility in areas of great environmental value, as is the case of the Arribes del Duero Natural Park. For this purpose, different statistical methods combined with Geographic Information Systems have been developed. The susceptibility assessment methodology is carried out by integrating different thematic layers: lithology, geomorphology (slopes, curvature, aspect), hydrogeology and vegetation, performing map algebra and taking into consideration their weighting using deterministic methods (analytical hierarchy method). The susceptibility results are grouped into Very High, High, Medium, Low and Very Low so that the areas of Very High susceptibility correspond to areas of the high slope, without vegetation, south facing, with a lithology of quartzites, metapelites, and gneisses (canyons, steep valleys) and, in the case of very low susceptibility, with a lithology of quartzites, metapelites, and gneisses, On the contrary, the sectors of lower susceptibility coincide with flat areas, denser vegetation, north facing, with a lithology of conglomerates, pebbles, sands and clays, such as erosion surfaces or valley bottoms. The analysis carried out in this current investigation will allow the territorial delimitation of problem areas and the establishment of risk mitigation and management measures. Full article
(This article belongs to the Special Issue Geomorphology and Soils Applied to Natural Resources Sustainability)
Show Figures

Figure 1

Back to TopTop