Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fibre optic sensor (FOC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3671 KiB  
Article
Chromogenic Approach for Oxygen Sensing Using Tapered Coreless Optical Fibre Coated with Methylene Blue
by Rahul Kumar and Neil Wight
Metrology 2024, 4(2), 295-303; https://doi.org/10.3390/metrology4020018 - 12 Jun 2024
Viewed by 1501
Abstract
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity [...] Read more.
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity of the sensor was also investigated. A maximum sensitivity of 0.19 dB/O2% in the oxygen concentration range of 0–37.5% was achieved for a TCL fibre sensor with a 2 µm taper waist diameter and a 0.86 µm MB sol–gel coating thickness, with a response time of 4 min. The sensor provides reproducible results even after 7 days and is shown to be highly selective to oxygen compared to argon and ethanol at the same concentration. Full article
Show Figures

Figure 1

11 pages, 6207 KiB  
Article
Performance Enhancement of the Polarimetric Fibre Optical Current Sensor at JET Using Polarisation Optimisation
by Andrei Gusarov, Perry Beaumont, Paula Siren and JET Contributors
Sensors 2024, 24(2), 555; https://doi.org/10.3390/s24020555 - 16 Jan 2024
Cited by 2 | Viewed by 1404
Abstract
To achieve optimal operation of the polarimetry-based FOCS, the light polarisation state at the input of the sensing fibre part must be close to a linear one. In the case of a FOCS deployed on a tokamak, the Joint European Torus (JET) in [...] Read more.
To achieve optimal operation of the polarimetry-based FOCS, the light polarisation state at the input of the sensing fibre part must be close to a linear one. In the case of a FOCS deployed on a tokamak, the Joint European Torus (JET) in the present work, the long fibre optics link between the laser source and the sensing fibre modifies the polarisation in an unpredictable way, making it unclear which source polarisation state is to be set. A method for performing the necessary polarisation adjustment in a systematic way is proposed based on the FOCS analysis. The method requires performing data acquisition at two different input polarisations. Based on these measurements, the optimal laser source polarisation can be found. The method was experimentally verified using laboratory set-up and then successfully demonstrated with the FOCS installed at JET. Full article
(This article belongs to the Special Issue Developments and Applications of Optical Fiber Sensors)
Show Figures

Figure 1

34 pages, 2183 KiB  
Review
Corrosion Monitoring in Atmospheric Conditions: A Review
by Kateryna Popova and Tomáš Prošek
Metals 2022, 12(2), 171; https://doi.org/10.3390/met12020171 - 18 Jan 2022
Cited by 48 | Viewed by 11558
Abstract
A variety of techniques are available for monitoring metal corrosion in electrolytes. However, only some of them can be applied in the atmosphere, in which case a thin discontinuous electrolyte film forms on a surface. In this review, we describe, evaluate and compare [...] Read more.
A variety of techniques are available for monitoring metal corrosion in electrolytes. However, only some of them can be applied in the atmosphere, in which case a thin discontinuous electrolyte film forms on a surface. In this review, we describe, evaluate and compare both traditional and state-of-the-art real-time corrosion monitoring techniques to identify those suitable for atmospheric conditions. For atmospheric corrosion monitoring (ACM), electrochemical impedance spectroscopy (EIS), electrochemical noise (EN), electrical resistance (ER) probes, quartz crystal microbalance (QCM), radio-frequency identification sensors (RFID), fibre optic corrosion sensors (FOCS) and respirometry, the underlying principles, characteristics and application examples are described, and their advantages and drawbacks outlined. Finally, the techniques are compared in terms of their sensitivity, ease of setup, data processing, ability to identify underlying corrosion mechanisms and applicability in different fields of atmospheric corrosion protection and research. Full article
(This article belongs to the Special Issue Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

Back to TopTop