Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = fiber-reinforced polymer–steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 113
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 402
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

41 pages, 16361 KiB  
Review
Progress on Sustainable Cryogenic Machining of Hard-to-Cut Material and Greener Processing Techniques: A Combined Machinability and Sustainability Perspective
by Shafahat Ali, Said Abdallah, Salman Pervaiz and Ibrahim Deiab
Lubricants 2025, 13(8), 322; https://doi.org/10.3390/lubricants13080322 - 23 Jul 2025
Viewed by 318
Abstract
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to [...] Read more.
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to maintain strength at high operating temperatures. Due to these characteristics, such materials are employed in applications such as aerospace, marine, energy generation, and structural. The purpose of this article is to investigate the machinability of these alloys under various cutting conditions. The purpose of this article is to compare cryogenic cooling and cryogenic processing from the perspective of machinability and sustainability in the manufacturing process. Compared to conventional machining, hybrid techniques, which mix cryogenic and minimal quantity lubricant, led to significantly reduced cutting forces of 40–50%, cutting temperatures and surface finishes by approximately 20–30% and more than 40%, respectively. A carbon footprint is determined by several factors including power consumption, energy requirements, and carbon dioxide emissions. As a result of the cryogenic technology, the energy consumption, power consumption, and CO2 emissions were reduced by 40%, 28%, and 35%. Full article
Show Figures

Figure 1

20 pages, 5397 KiB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 453
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 300
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

39 pages, 4364 KiB  
Review
Bond Behavior of Glass Fiber-Reinforced Polymer (GFRP) Bars Embedded in Concrete: A Review
by Saad Saad and Maria Anna Polak
Materials 2025, 18(14), 3367; https://doi.org/10.3390/ma18143367 - 17 Jul 2025
Viewed by 301
Abstract
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to [...] Read more.
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to CFRP and BFRP reinforcement. However, GFRP bars also suffer from a few limitations. One of the main issues that affects the performance of GFRP reinforcing bars is their bond with concrete, which may differ from the bond between traditional steel bars and concrete. However, despite the wide attention of researchers, there has not been a critical review of the recent research progress on bond behavior between GFRP bars and concrete. The objective of this paper is to provide an overview of the current state of research on bond in GFRP-reinforced concrete in an attempt to systematize the existing scientific knowledge. The study summarizes experimental investigations that directly measure bond strength and investigates the different factors that influence it. Additionally, an overview of the analytical and empirical models used to simulate bond behavior is then presented. The findings indicate the dependence of the bond on several factors that include bar diameter, bar surface, concrete strength, and embedment length. Additionally, it was concluded that both traditional and more recent bond models do not explicitly account for the effect of different factors, which highlights the need for improved bond models that do not require calibration with experimental tests. Full article
Show Figures

Figure 1

30 pages, 5062 KiB  
Review
State-of-the-Art Review of Studies on the Flexural Behavior and Design of FRP-Reinforced Concrete Beams
by Hau Tran, Trung Nguyen-Thoi and Huu-Ba Dinh
Materials 2025, 18(14), 3295; https://doi.org/10.3390/ma18143295 - 12 Jul 2025
Viewed by 527
Abstract
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused [...] Read more.
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused on the behavior of FRP RC beams. In this paper, a comprehensive overview of previous studies is conducted to provide a thorough understanding about the behavior, the design, and the limitations of FRP RC beams. Particularly, experimental studies on FRP RC beams are collected and reviewed. In addition, the numerical analysis of FRP beams including the finite element (FE) analysis, the discrete element (DE) analysis, and artificial intelligence/machine learning (AI/ML) is summarized. Moreover, the international standards for the design of FRP RC beams are presented and evaluated. Through the review of previous studies, 93 tested specimens are collected. They can be a great source of reference for other studies. In addition, it has been found that the studies on the continuous beams and deep beams reinforced with FRP bars are still limited. In addition, more studies using DE analysis and AI/ML to analyze the response of FRP RC beams under loading conditions should be conducted. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 3081 KiB  
Article
Numerical Evaluation of Modified Mortar Coatings for Thermal Protection of Reinforced Concrete and Steel Structures Under Standardized Fire Exposure
by Fabrício Longhi Bolina, Arthur S. Henn, Débora Bretas Silva and Eduardo Cesar Pachla
Coatings 2025, 15(7), 806; https://doi.org/10.3390/coatings15070806 - 9 Jul 2025
Viewed by 275
Abstract
This study investigates the thermal performance of 23 different mortar types, each containing different mixes, properties, and additives. A comprehensive literature review was conducted to collect experimental data on the thermal properties of these mortars, which were then used in a numerical analysis [...] Read more.
This study investigates the thermal performance of 23 different mortar types, each containing different mixes, properties, and additives. A comprehensive literature review was conducted to collect experimental data on the thermal properties of these mortars, which were then used in a numerical analysis through thermal finite element modeling. The results showed that all mortar types contributed to reducing the internal temperature of structural steel and reinforced concrete elements, with performance primarily influenced by key factors such as the mortar’s thermal conductivity, specific heat capacity, thermal diffusivity, and coating thickness. In particular, the mortar with glass fiber reinforced polymer (GFRP) as a slag substitute and the mortar with expanded perlite replacing sand showed the highest thermal protection and achieved a temperature reduction on the order of 100%. In contrast, mortars containing 30% vermiculite or 15% light expanded polyvinyl chloride (PVC) as a sand substitute showed the lowest thermal performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 311
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

24 pages, 2554 KiB  
Review
Technical Chains in Civil and Urban Engineering: Review of Selected Solutions, Shaping, Geometry, and Dimensioning
by Krzysztof Adam Ostrowski and Mariusz Spyrowski
Appl. Sci. 2025, 15(13), 7600; https://doi.org/10.3390/app15137600 - 7 Jul 2025
Viewed by 435
Abstract
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The [...] Read more.
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The study includes a detailed classification of chains by type, material, and application, ranging from steel-based lifting and transport chains to lightweight, corrosion-resistant polymer types. Manufacturing methods and connection techniques are also discussed, underscoring the importance of proper assembly for mechanical reliability. Special attention is given to the role of materials, particularly the emergence of polymer composites reinforced with glass or carbon fibers, which offer promising alternatives to conventional metals. Although such composites exhibit advantageous properties—such as low weight, corrosion resistance, and energy efficiency—their application remains limited, insufficient load-bearing capacity, and the absence of standardized design guidelines. The review identifies critical knowledge gaps in the field, especially concerning shaping, dimensioning, and normative requirements for polymer-based load-bearing chains. It also highlights the lack of focused research on chain-specific geometries and the need for numerical simulations to optimize link design. The article concludes by emphasizing the importance of developing sustainable, durable, and standardized chain systems—particularly those utilizing recycled or novel materials—to meet both technical demands and environmental goals. This work supports future innovation in the design of advanced chain structures and provides a foundation for expanding the use of high-performance composites in civil and urban engineering applications. Full article
Show Figures

Figure 1

20 pages, 16120 KiB  
Article
Lateral Performance of Steel–Concrete Anchors Embedded in RC Columns Subjected to Fire Scenario
by Amer Alkloub, Mahmoud Dwaikat, Ahmed Ashteyat, Farouq Sammour and Asala Jaradat
Infrastructures 2025, 10(7), 173; https://doi.org/10.3390/infrastructures10070173 - 5 Jul 2025
Viewed by 326
Abstract
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research [...] Read more.
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research focuses on evaluating the performance of steel–concrete column connections under the combined effects of lateral loading and fire exposure. Additionally, the study investigates the use of carbon fiber-reinforced polymers (CFRP) for strengthening and repairing these connections. The research methodology combines experimental testing and finite-element modeling to achieve its objectives. First, experimental investigation was carried out to test two groups of steel-reinforced concrete column specimens, each group made of three specimens. The first group specimens were designed based on special moment frame (SMF) detailing, and the other group specimens were designed based on intermediate moment frame (IMF) detailing. These two types of design were selected based on seismic demands, with SMFs offering high ductility and resilience for severe earthquakes and IMFs providing a cost-effective solution for moderate seismic zones, both benefiting from ongoing innovations in connection detailing and design approaches. Then, finite-element analysis was conducted to model the test specimens. High-fidelity finite-element modeling was conducted using ANSYS program, which included three-dimensional coupled thermal-stress analyses for the six tested specimens and incorporated nonlinear temperature-dependent materials characteristics of each component and the interfaces. Both the experimental and numerical results of this study show that fire has a more noticeable effect on displacement compared to the peak capacities of both types of specimens. Fire exposure results in a larger reduction in the initial residual lateral stiffness of the SMF specimens when compared to IMF specimens. While the effect of CFRP wraps on initial residual lateral stiffness was consistent for all specimens, it caused more improvement for the IMF specimen in terms of post-fire ductility when compared to SMF specimens. This exploratory study confirms the need for further research on the effect of fire on the concrete–steel anchorage zones. Full article
Show Figures

Figure 1

21 pages, 4834 KiB  
Article
Static and Dynamic Performance of Long-Span Suspension Bridges with Flexible CFRP Central Buckles
by Maoqiang Wang, Taike Zhang, Huaimao Yang, Yaoyu Zhu, Bin Liu and Yue Liu
Polymers 2025, 17(13), 1807; https://doi.org/10.3390/polym17131807 - 28 Jun 2025
Viewed by 280
Abstract
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible [...] Read more.
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible central buckle system based on a Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. This study proposes a novel flexible central buckle system based on Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. Taking the long-span Shiziyang Suspension Bridge as a case study, a finite element model is developed to investigate the effects of CFRP central buckles with eight different stiffness levels on the static and dynamic responses of the bridge. The results indicate that a CFRP central buckle with a low elastic modulus achieves comparable displacement control performance to that of traditional steel buckles, while inducing significantly lower internal forces, demonstrating strong potential as a substitute. Based on this finding, a coordinated control strategy combining the CFRP central buckle with end-span restraining devices is proposed. This integrated system reduces midspan displacement and central buckle internal force by 61.1% and 49.8%, respectively. Considering both performance and cost-efficiency, a low-modulus CFRP material such as T300 is recommended. The proposed approach offers a new and effective solution for longitudinal control in ultra-long-span suspension bridges. Full article
Show Figures

Figure 1

24 pages, 12029 KiB  
Article
The Influence of Fillers on the Reinforcement Capabilities of Polypropylene Based Mono-Material and Core-Shell Fibers in Concrete, a Comparison
by Jonas Herz, Dirk Muscat and Nicole Strübbe
Polymers 2025, 17(13), 1781; https://doi.org/10.3390/polym17131781 - 27 Jun 2025
Viewed by 383
Abstract
Noncorrosive concrete reinforcement, such as polymer fibers, is needed to overcome the current issues caused by corroded steel reinforcements. Fibers made of polypropylene show a low bonding behavior in concrete. Fillers can help to overcome this issue but often lead to reduced mechanical [...] Read more.
Noncorrosive concrete reinforcement, such as polymer fibers, is needed to overcome the current issues caused by corroded steel reinforcements. Fibers made of polypropylene show a low bonding behavior in concrete. Fillers can help to overcome this issue but often lead to reduced mechanical properties. Core-shell fibers, which split the mechanical properties and the bonding behavior between the core and the shell component, could be a solution. This study investigates mono-material and core-shell fibers produced with calcium carbonate and bentonite fillers and compares their behavior in tensile tests, density measurements, contact angle measurements, topography measurements, single fiber pull-out tests, reflected light microscopy, and thermogravimetric analysis. The fillers caused an increased drawability, resulting in higher mechanical properties. Further, in the core-shell fibers, the calcium carbonate increased the surface roughness, which led to a better anchoring of the fiber in concrete, which was also visible in the deformation during pull-out observed in reflected light microscopy pictures. The thermogravimetric analysis showed a delay in onset of degradation for fibers containing bentonite. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

22 pages, 16001 KiB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Viewed by 273
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 745
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

Back to TopTop