Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (144)

Search Parameters:
Keywords = fiber shedding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 327
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

23 pages, 8380 KiB  
Article
Characterizing the Fermentation of Oat Grass (Avena sativa L.) in the Rumen: Integrating Degradation Kinetics, Ultrastructural Examination with Scanning Electron Microscopy, Surface Enzymatic Activity, and Microbial Community Analysis
by Liepeng Zhong, Yujun Qiu, Mingrui Zhang, Shanchuan Wei, Shuiling Qiu, Zhiyi Ma, Mingming Gu, Benzhi Wang, Xinyue Zhang, Mingke Gu, Nanqi Shen and Qianfu Gan
Animals 2025, 15(14), 2049; https://doi.org/10.3390/ani15142049 - 11 Jul 2025
Viewed by 275
Abstract
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern [...] Read more.
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern Fujian, were selected as experimental animals. The rumen degradation rate of oat grass was measured at 4, 12, 24, 36, 48, and 72 h using the nylon bag method. Surface physical structure changes in oat grass were observed using scanning electron microscopy (SEM), cellulase activity was measured, and bacterial composition was analyzed using high-throughput 16S rRNA gene sequencing technology. The findings of this study indicate that oat grass had effective degradation rates (ED) of 47.94%, 48.69%, 38.41%, and 30.24% for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acidic detergent fiber (ADF), respectively. The SEM was used to investigate the degradation process of oat grass in the rumen. After 24 h, extensive degradation of non-lignified tissue was observed, resulting in the formation of cavities. At 36 h, significant shedding was observed, and by 72 h, only the epidermis and thick-walled tissue, which exhibited resistance to degradation, remained intact. Surface-attached microorganisms produced β-GC, EG, CBH, and NEX enzymes. The activity of these enzymes exhibited a significant increase between 4 and 12 h and showed a positive correlation with the degradation rate of nutrients. However, the extent of correlation varied. Prevotella and Treponema were identified as key genera involved in the degradation of roughage, with their abundance decreasing over time. Principle Coordinate Analysis (PCOA) revealed no significant differences in the rumen microbial structure across different time points. However, Non-Metric Multidimensional Scaling (NMDS) indicated a discernible diversity order among the samples. According to the Spearman correlation coefficient test, Ruminococcus, Fibrobacter, and Saccharoferments exhibited the closest relationship with nutrient degradation rate and surface enzyme activity, displaying a significant positive correlation. In summary, this study delineates a time-resolved correlative framework linking microbial succession to structural and enzymatic dynamics during oat grass degradation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 3949 KiB  
Article
Study on the Compressive Strength Predicting of Steel Fiber Reinforced Concrete Based on an Interpretable Deep Learning Method
by Huiming Wang, Jie Lin and Shengpin Guo
Appl. Sci. 2025, 15(12), 6848; https://doi.org/10.3390/app15126848 - 18 Jun 2025
Viewed by 334
Abstract
Steel fiber reinforced concrete (SFRC) exhibits excellent material enhancement and toughening properties. It is widely used in applications such as airport runways, highway pavements, and bridge deck overlays. In order to predict the compressive strength of SFRC efficiently and accurately, this study proposes [...] Read more.
Steel fiber reinforced concrete (SFRC) exhibits excellent material enhancement and toughening properties. It is widely used in applications such as airport runways, highway pavements, and bridge deck overlays. In order to predict the compressive strength of SFRC efficiently and accurately, this study proposes a deep learning-based prediction model, trained and tested on a large set of experimental data. Additionally, the SHapley Additive exPlanations (SHAP) interpretability method is employed to analyze and interpret the prediction outcomes. SHAP facilitates the identification and visualization of both positive and negative correlations among input features, along with their magnitudes and overall importance from local and global perspectives. This analysis sheds light on the decision-making logic of the “black-box” model and addresses the transparency challenges typically associated with conventional machine learning (ML) approaches. Fourteen physical parameters, including steel fiber content, length, diameter, cement dosage, coarse aggregate content, and fly ash content, are selected as input features. The SHAP values of these parameters are visualized to assess their importance, impact, and influencing patterns on compressive strength prediction. The results show that the optimized deep learning model has higher prediction accuracy and generalization ability compared to other traditional ML models. The SHAP analysis results are consistent with the experimental results, and the predictive model well reflects the complex nonlinear relationship between various characteristic parameters, which can provide a basis and reference for the engineering design of SFRC materials. Full article
Show Figures

Figure 1

21 pages, 858 KiB  
Article
Nutrients, Phytochemicals, and In Vitro Antioxidant and Antimicrobial Activities of Lulo (Solanum quitoense Lam.) Fruit Pulp, Peel, and Seeds
by Mikel Añibarro-Ortega, Maria Inês Dias, Jovana Petrović, Alexis Pereira, Marina Soković, Lillian Barros and José Pinela
Foods 2025, 14(12), 2083; https://doi.org/10.3390/foods14122083 - 13 Jun 2025
Viewed by 1068
Abstract
Lulo or naranjilla (Solanum quitoense Lam.) is an Andean fruit with a sour and refreshing flavor, widely used in the preparation of juices and sweets. Despite its potential for international markets, it remains largely unknown outside its native regions, and most existing [...] Read more.
Lulo or naranjilla (Solanum quitoense Lam.) is an Andean fruit with a sour and refreshing flavor, widely used in the preparation of juices and sweets. Despite its potential for international markets, it remains largely unknown outside its native regions, and most existing studies have focused on the whole fruit or its juice. This study investigated the nutritional and phenolic profiles of the peel, pulp, and seeds of S. quitoense using official food analysis methods and chromatographic techniques. In addition, the in vitro antioxidant activity and antimicrobial effects against foodborne fungi and bacteria were assessed. The peel was rich in ascorbic acid (25.2 mg/100 g fw), α-tocopherol (7.9 mg/100 g fw), dietary fiber (16.5 g/100 g fw), macrominerals (Na, Ca, K), and flavonoids (14.2 mg/g extract); the pulp contained high levels of citric acid (4.22 g/100 g fw) and sucrose (2.7 g/100 g fw); and the seeds stood out for their contents of trace elements (Zn, Cu, Mn, Fe), oleic acid, and spermidine-derived phenolamides (37.8 mg/g extract). Hydroethanolic extracts showed antioxidant activity by inhibiting lipid peroxidation and oxidative hemolysis, with the seed extract exhibiting the strongest antifungal effect against Aspergillus versicolor, likely due to its high spermidine derivative content. These findings shed light on the potential of S. quitoense fruit for the development of functional foods, antioxidant-rich beverages, and nutraceutical products. Full article
Show Figures

Graphical abstract

16 pages, 1401 KiB  
Article
Tree Shade Improves Milking Performance, Apparent Digestibility, Antioxidant Capacity, and Immunity of Dairy Cows in Open Sheds
by Jianjie Li, Yinghao Zhou, Man Feng, Lianjie Song, Yuqing Liu, Haitong Yang, Lu Zhang, Ao Zhang, Xinnian Zhao, Xinsheng Sun, Yuhong Gao and Jianjun Guo
Animals 2025, 15(11), 1673; https://doi.org/10.3390/ani15111673 - 5 Jun 2025
Viewed by 580
Abstract
Dairy cows are suffering from heat stress (HS) worldwide, and this has become a continual challenge in dairy production systems. The objective of this study was to investigate the effects of the shade of poplar trees on alleviating HS via measuring milk production, [...] Read more.
Dairy cows are suffering from heat stress (HS) worldwide, and this has become a continual challenge in dairy production systems. The objective of this study was to investigate the effects of the shade of poplar trees on alleviating HS via measuring milk production, nutrient digestibility, immunity, and antioxidant capability in the serum of dairy cows in open cowsheds. A total of 540 lactating Holstein cows were assigned to 2 groups (3 cowsheds per group, 90 cows per cowshed), including the treatment group with poplar trees on the west side of sheds and the control group without trees. This study was carried out in the early-hot season, hot season, and late-hot season. The results showed the following: (1) During the hot season, shaded cows exhibited lower respiration rate (p < 0.05) and higher dry matter intake (p < 0.05) and daily milk yield (p < 0.05), compared with the control. Also, apparent digestibility of crude protein, acid detergent fiber, and neutral detergent fiber demonstrated an increase (p < 0.05) in shaded cows during the hot season. (2) Total antioxidant capacity and superoxide dismutase activity in the serum of shaded cows increased (p < 0.05) during the hot season and late-hot season, compared with the control. (3) Serum interleukin-4, immunoglobulin G, and immunoglobulin M concentrations of shaded cows were greater (p < 0.05) than the control during the hot season. Additionally, serum concentrations of HSP60, HSP70, and HSP90 in shaded cows showed a decrease (p < 0.05) during the hot season. In conclusion, shade from poplar trees can mitigate the adverse impact of high-temperature environments on cows in open cowsheds. Full article
Show Figures

Figure 1

35 pages, 11695 KiB  
Article
Polymorphism in Glu-Phe-Asp Proteinoids
by Panagiotis Mougkogiannis and Andrew Adamatzky
Biomimetics 2025, 10(6), 360; https://doi.org/10.3390/biomimetics10060360 - 3 Jun 2025
Viewed by 505
Abstract
Glu-Phe-Asp (GFD) proteinoids represent a class of synthetic polypeptides capable of self-assembling into microspheres, fibres, or combinations thereof, with morphology dramatically influencing their electrical properties. Extended recordings and detailed waveforms demonstrate that microspheres generate rapid, nerve-like spikes, while fibres exhibit consistent and gradual [...] Read more.
Glu-Phe-Asp (GFD) proteinoids represent a class of synthetic polypeptides capable of self-assembling into microspheres, fibres, or combinations thereof, with morphology dramatically influencing their electrical properties. Extended recordings and detailed waveforms demonstrate that microspheres generate rapid, nerve-like spikes, while fibres exhibit consistent and gradual variations in voltage. Mixed networks integrate multiple components to achieve a balanced output. Electrochemical measurements show clear differences. Microspheres have a low capacitance of 1.926±5.735μF. They show high impedance at 6646.282±178.664 Ohm. Their resistance is low, measuring 15,830.739 ± 652.514 mΩ. This structure allows for quick ionic transport, leading to spiking behaviour. Fibres show high capacitance (9.912±0.171μF) and low impedance (209.400±0.286 Ohm). They also have high resistance (163,067.613 ± 9253.064 mΩ). This combination helps with charge storage and slow potential changes. The 50:50 mixture shows middle values for all parameters. This confirms that hybrid electrical properties have emerged. The differences come from basic structural changes. Microspheres trap ions in small, round spaces. This allows for quick release. In contrast, fibers spread ions along their length. This leads to slower wave propagation. In mixed systems, diverse voltage zones emerge, suggesting cooperative dynamics between morphologies. This electrical polymorphism in simple proteinoid systems may explain complexity in biological systems. This study shows that structural polymorphism in GFD proteinoids affects their electrical properties. This finding is significant for biomimetic computing and sheds light on prebiotic information-processing systems. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

17 pages, 2105 KiB  
Review
Fibrous Microplastics Release from Textile Production Phases: A Brief Review of Current Challenges and Applied Research Directions
by Md Imran Hossain, Yi Zhang, Abu Naser Md Ahsanul Haque and Maryam Naebe
Materials 2025, 18(11), 2513; https://doi.org/10.3390/ma18112513 - 27 May 2025
Cited by 2 | Viewed by 961
Abstract
Microplastics (MPs), particularly fibrous MPs, have emerged as a significant environmental concern due to their pervasive presence in aquatic and terrestrial ecosystems. The textile industry is a significant contributor to MP pollution, particularly through the production of synthetic fibers and natural/synthetic blends, which [...] Read more.
Microplastics (MPs), particularly fibrous MPs, have emerged as a significant environmental concern due to their pervasive presence in aquatic and terrestrial ecosystems. The textile industry is a significant contributor to MP pollution, particularly through the production of synthetic fibers and natural/synthetic blends, which release substantial amounts of fibrous MPs. Among the various types of MPs, fibrous MPs account for approximately 49–70% of the total MP load found in wastewater globally, primarily originating from textile manufacturing processes and the domestic laundering of synthetic fabrics. MP shedding poses a significant challenge for environmental management, requiring a comprehensive examination of the mechanisms and strategies for the mitigation involved. To address the existing knowledge gaps regarding MP shedding during the textile production processes, this brief review examines the current state of MP shedding during textile production, covering both dry and wet processes, and identifies the sources and pathways of MPs from industrial wastewater treatment plants to the environment. It further provides a critical evaluation of the existing recycling and upcycling technologies applicable to MPs, highlighting their current limitations and exploring their potential for future applications. Additionally, it explores the potential for integrating sustainable practices and developing regulatory frameworks to facilitate the transition towards a circular economy within the textile industry. Given the expanding application of textiles across various sectors, including medical, agricultural, and environmental fields, the scope of microplastic pollution extends beyond conventional uses, necessitating urgent attention to the impact of fibrous MP release from both synthetic and bio-based textiles. This brief review consolidates the current knowledge and outlines the critical research gaps to support stakeholders, policymakers, and researchers in formulating effective, science-based strategies for reducing textile-derived microplastic pollution and advancing environmental sustainability. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Figure 1

17 pages, 1724 KiB  
Review
The Diversity of Fibrillin Functions: Lessons from the Periodontal Ligament
by Elisabeth Genot, Tala Al Tabosh, Sylvain Catros, Florian Alonso and Damien Le Nihouannen
Cells 2025, 14(11), 764; https://doi.org/10.3390/cells14110764 - 22 May 2025
Viewed by 653
Abstract
Marfan syndrome is caused by a mutation in the FBN1 gene encoding fibrillin-1. This extracellular matrix glycoprotein, which assembles into microfibrils, is best known for its scaffolding role in the production of elastic fibers responsible for connective tissue elasticity and tensile strength. Research [...] Read more.
Marfan syndrome is caused by a mutation in the FBN1 gene encoding fibrillin-1. This extracellular matrix glycoprotein, which assembles into microfibrils, is best known for its scaffolding role in the production of elastic fibers responsible for connective tissue elasticity and tensile strength. Research into Marfan syndrome mainly focuses on the pathophysiology involved in the degeneration of elastin-rich elastic fibers, which are essential components of the aortic wall. However, fibrillin-1 also exists in elastin-poor (elaunin) or elastin-free (oxytalan) microfibril bundles that were first described in the periodontal ligament (PDL). This dynamic, densely cellular, and highly vascularized tissue anchors teeth in their bone sockets and acts as a protective shock absorber during chewing. Current knowledge suggests that fibrillin microfibrils mechanically support blood vessels in the PDL and ensure their proper functioning. However, many more insights on the roles of fibrillin, especially independently of elastin, can be extracted from this tissue. Here, we review the phenotypic and functional characteristics of the PDL in connection with fibrillin-1, focusing on those related to microvessels. This review aims to shed light on this often-overlooked fibrillin-rich resource as a model for future studies investigating fibrillin functions in health and Marfan disease. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Marfan Syndrome)
Show Figures

Graphical abstract

16 pages, 3092 KiB  
Review
Sphingosine-1-Phosphate Modulation in Neurological Disorders: Insights from MS and Stroke
by Briana Maktabi, Faheem Shehjar, Zachary Senger, Logan Kountz, Syed Hasan, Kenan Maaieh, Kylee Hoersten, Jovana Duric and Zahoor A. Shah
Brain Sci. 2025, 15(5), 436; https://doi.org/10.3390/brainsci15050436 - 24 Apr 2025
Cited by 1 | Viewed by 1597
Abstract
Multiple sclerosis is a chronic autoimmune disease in which the immune system attacks the protective sheath or myelin that covers nerve fibers, impacting the brain’s ability to communicate with other areas of the body. This abnormal immune response recruits inflammatory substances, which appear [...] Read more.
Multiple sclerosis is a chronic autoimmune disease in which the immune system attacks the protective sheath or myelin that covers nerve fibers, impacting the brain’s ability to communicate with other areas of the body. This abnormal immune response recruits inflammatory substances, which appear as lesions on the brain and spinal cord. A stroke is characterized by a sudden impairment of neurological function resulting from the loss or restriction of blood flow due to acute damage to a localized area of the central nervous system, including the brain, retina, or spinal cord. While strokes, both ischemic and hemorrhagic, are different in terms of their pathogenesis to MS, mechanisms such as neuroinflammation and neurodegeneration are common denominators among these conditions. Recent studies highlight the involvement of the sphingosine-1-phosphate receptor in the treatment of strokes and how fingolimod, an S1P receptor modulator employed in MS treatment, may play a role in the treatment of stroke-like symptoms. This review aims to explore the potential link between stroke and MS, providing a comprehensive analysis of the existing evidence. It will also shed light on the role of S1P receptors in the pathophysiology of stroke, offering insights into their mechanistic contributions. Furthermore, the review will examine recent studies investigating the therapeutic potential of the S1P modulator, fingolimod, in acute stroke patients, highlighting its efficacy and potential clinical applications. Through this multifaceted approach, we hope to contribute to the development of a deeper understanding of these interconnected neurological conditions and their treatment strategies. Full article
Show Figures

Figure 1

15 pages, 1125 KiB  
Article
Cocaine-Induced Cardiac Alterations: Histological and Immunohistochemical Post-Mortem Analysis
by Valeria Palumbo, Michele Treglia, Manuel Scimeca, Francesca Servadei, Erica Giacobbi, Rita Bonfiglio, Margherita Pallocci, Pierluigi Passalacqua, Fabio Del Duca, Roberta Tittarelli, Luca Coppeta, Stefania Schiaroli, Giulio Cervelli, Alessandro Mauriello, Luigi Tonino Marsella and Silvestro Mauriello
Diagnostics 2025, 15(8), 999; https://doi.org/10.3390/diagnostics15080999 - 14 Apr 2025
Viewed by 904
Abstract
Background: Cocaine abuse represents a serious health issue. The cardiovascular system is one of the main sites on which cocaine elicits its toxicity, as indicated by deadly events mainly related to myocardial infarction. The main aim of this study was to characterize the [...] Read more.
Background: Cocaine abuse represents a serious health issue. The cardiovascular system is one of the main sites on which cocaine elicits its toxicity, as indicated by deadly events mainly related to myocardial infarction. The main aim of this study was to characterize the histological and immunohistochemical alterations related to cocaine abuse in cardiac tissue. Methods: Cardiac tissue samples derived from cocaine-related (n = 30) and not-cocaine-related deaths (n = 30). Histomorphology evaluations and immunohistochemistry for inflammatory biomarkers (CD45 and CD3) have been performed on formalin-fixed, paraffin-embedded (FFPE) cardiac tissue samples. Results: A higher frequency of cardiac alterations, such as wavy fibers, interstitial edema, fibrosis and hemorrhagic extravasation, were found in the group of cocaine users compared to the control group. Moreover, immunohistochemical analysis showed higher levels of inflammatory cells infiltrate within the cocaine-related deaths group. Conclusions: These data could shed new light on the complex relationship between cocaine use and cardiac alterations. Specifically, our data support the evidence that cocaine abuse is related to cardiac inflammation. Therefore, the generation of an inflammatory state could promote functional and structural cardiac alterations and lead ultimately to myocardial infarction. This would explain the high frequency of acute myocardial infarction in cocaine users. Full article
(This article belongs to the Special Issue New Perspectives in Forensic Diagnosis)
Show Figures

Figure 1

32 pages, 4856 KiB  
Article
Assessing the Sustainability of Local Construction Materials in Ecuador Through an Interdisciplinary Approach
by Juan Sebastián Martínes, Estefania Barros, Kristi Padrón, Jonnathan Aguirre, Cecilia Matasci, Eleonora Crenna, Marcel Gauch, Paul Vanegas and Dolores Sucozhañay
Sustainability 2025, 17(5), 1775; https://doi.org/10.3390/su17051775 - 20 Feb 2025
Viewed by 1429
Abstract
Worldwide, concrete is used as the material of choice in the construction sector. In Latin American countries, concrete is primarily used in structural elements, because it is a low-maintenance, versatile, and economical material. With its characteristics, concrete has made it possible to cover [...] Read more.
Worldwide, concrete is used as the material of choice in the construction sector. In Latin American countries, concrete is primarily used in structural elements, because it is a low-maintenance, versatile, and economical material. With its characteristics, concrete has made it possible to cover Ecuador’ housing deficit to some extent. However, this construction material does not entirely respond to the needs of local communities, who are especially concerned about the displacement of traditional techniques and the loss of cultural heritage. In Ecuador, different fiber- and earth-based materials have been used in the construction sector for a long time. These materials present different technical, environmental, social, and cultural characteristics. This study aimed to evaluate the sustainability of the production of six local materials in Ecuador under three dimensions: environmental, social, and cultural, using local data. The data were collected in local production workshops, and life-cycle-based methodologies were applied. The results showed the relevance of developing regional inventories to represent the reality of production within the territory. Additionally, integrating the evaluation of environmental, social, and cultural dimensions shed light on the current situation of the building materials production sector, identifying possible trade-offs or synergies with a sustainable and interdisciplinary approach. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization
by Wen-Yan Wang, Pan He, Ting Peng, Shuai Zhang, Guang-Zhao Li, Min Nie and Rui Han
Molecules 2025, 30(4), 862; https://doi.org/10.3390/molecules30040862 - 13 Feb 2025
Viewed by 762
Abstract
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement [...] Read more.
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement of mechanical properties in polyamide 66 (PA66) through the introduction of arylamide-based materials (TMB-5) during the melt-spinning process. TMB-5, possessing amide groups like PA66, can reorganize intermolecular hydrogen bonds within PA66, thereby facilitating molecular movement and reducing chain entanglement during fiber formation. Consequently, the synergistic effect of TMB-5 and the stretching field leads to enhanced crystallization and molecular and lamellae orientation in PA66 fibers without post-drawing, resulting in a significant increase in tensile strength and modulus. This work not only offers a novel strategy for adjusting polymer mechanical performance but also sheds light on the importance of molecular interactions in governing polymer properties. Full article
Show Figures

Graphical abstract

20 pages, 11056 KiB  
Article
Insights into the Role of GhTAT2 Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton
by Teame Gereziher Mehari, Jungfeng Tang, Haijing Gu, Hui Fang, Jinlei Han, Jie Zheng, Fang Liu, Kai Wang, Dengbing Yao and Baohua Wang
Int. J. Mol. Sci. 2025, 26(3), 1355; https://doi.org/10.3390/ijms26031355 - 5 Feb 2025
Viewed by 1653
Abstract
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species [...] Read more.
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species were analyzed via genome-wide analysis, and the results unveiled 103 genes in G. hirsutum, 47 in G. arboreum, and 53 in G. raimondii. Phylogenetic analysis, gene structure examination, motif analysis, subcellular localization prediction, and promoter analysis revealed that the GhAT genes can be classified into five main categories and play key roles in abiotic stress tolerance. Using RNA-seq expression and KEGG enrichment analysis of GhTAT2, a coexpression network was established, followed by RT-qPCR analysis to identify hub genes. The RT-qPCR results revealed that the genes Gh_A13G1261, Gh_D13G1562, Gh_D10G1155, Gh_A10G1320, and Gh_D06G1003 were significantly upregulated in the leaf and root samples following drought stress treatment, with Gh_A13G1261 identified as the hub gene. The GhTAT2 genes were considerably enriched for tyrosine, cysteine, methionine, and phenylalanine metabolism and isoquinoline alkaloid, tyrosine, tryptophan, tropane, piperidine, and pyridine alkaloid biosynthesis. Under drought stress, KEGG enrichment analysis manifested significant upregulation of amino acids such as L-DOPA, L-alanine, L-serine, L-homoserine, L-methionine, and L-cysteine, whereas metabolites such as maleic acid, p-coumaric acid, quinic acid, vanillin, and hyoscyamine were significantly downregulated. Silencing the GhTAT2 gene significantly affected the shoot and root fresh weights of the plants compared with those of the wild-type plants under drought conditions. RT-qPCR analysis revealed that GhTAT2 expression in VIGS-treated seedlings was lower than that in both wild-type and positive control plants, indicating that silencing GhTAT2 increases sensitivity to drought stress. In summary, this thorough analysis of the gene family lays the groundwork for a detailed study of the GhTAT2 gene members, with a specific focus on their roles and contributions to drought stress tolerance. Full article
Show Figures

Figure 1

16 pages, 3098 KiB  
Article
Testing Protocols and Procedures for Undertaking Fire Resistance Tests on Concrete Structures Incorporating Fiber-Reinforced Polymers
by Venkatesh Kodur, M. Z. Naser and Hee Sun Kim
Polymers 2025, 17(3), 404; https://doi.org/10.3390/polym17030404 - 3 Feb 2025
Viewed by 1067
Abstract
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of [...] Read more.
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of FRPs; thus, their fire performance is different from that of concrete structures with conventional metallic reinforcement. However, the fire resistance of these FRP-incorporated structural members continues to be evaluated through standard fire resistance tests, which are similar to conventional steel and concrete structural members. Despite the complexity of this testing approach and its drawbacks, standard fire testing remains a cornerstone in evaluating FRP-incorporated concrete structural members. Thus, this paper sheds more light on the fire testing procedure and discusses the distinctive factors that differentiate the fire performance of FRP-incorporated concrete structures from that of conventional concrete structures and the need for additional provisions to test such structures. To address the current shortcomings, a set of additional testing protocols and procedures for undertaking fire resistance tests on FRP-incorporated concrete structural members are presented. The performance criteria to be applied to evaluate the failure of FRP–RC structural members under fire conditions are discussed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

36 pages, 1327 KiB  
Review
The Role of Nutrition Across Production Stages to Improve Sow Longevity
by Matheus Saliba Monteiro, Rafaella Fernandes Carnevale, Bruno Bracco Donatelli Muro, Ana Lígia Braga Mezzina, Bruno Braga Carnino, André Pegoraro Poor, Carlos Emilio Cabrera Matajira and Cesar Augusto Pospissil Garbossa
Animals 2025, 15(2), 189; https://doi.org/10.3390/ani15020189 - 12 Jan 2025
Cited by 1 | Viewed by 4049
Abstract
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the [...] Read more.
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females. Additionally, prevalent conditions such as gastric ulcers and cystitis raise ethical, welfare, and economic concerns. Despite the several studies related to sow nutrition, there are no studies which compile and extrapolate nutrition approaches from the rearing period and their impact on sows’ health and longevity. Also, the aim of our review was to shed light on gaps that require further investigation. Controlling body condition scores is crucial for maximizing productivity in sows. During gestation, high-fiber diets help maintain optimal body condition and prevent constipation, particularly during the peripartum period. Antioxidants offer a range of beneficial effects during this critical phase. Additionally, probiotics and acidifiers can enhance gut health and lower the risk of genitourinary infections. On the day of farrowing, energy supplementation emerges as a promising strategy to reduce farrowing duration. Collectively, these strategies address major health challenges, enhancing welfare and promoting sow’s longevity. Full article
(This article belongs to the Special Issue Best Management Practices for Breeding Sows and Boars)
Show Figures

Figure 1

Back to TopTop