Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ferredoxin-NADP+ oxidoreductase (FNR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 262
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

17 pages, 4496 KiB  
Article
Redox Properties of Bacillus subtilis Ferredoxin:NADP+ Oxidoreductase: Potentiometric Characteristics and Reactions with Pro-Oxidant Xenobiotics
by Mindaugas Lesanavičius, Daisuke Seo, Gintarė Maurutytė and Narimantas Čėnas
Int. J. Mol. Sci. 2024, 25(10), 5373; https://doi.org/10.3390/ijms25105373 - 14 May 2024
Cited by 1 | Viewed by 1453
Abstract
Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of [...] Read more.
Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be −0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

15 pages, 721 KiB  
Article
Thylakoid Rhodanese-like Protein–Ferredoxin:NADP+ Oxidoreductase Interaction Is Integrated into Plant Redox Homeostasis System
by Lea Vojta, Anja Rac-Justament, Bernd Zechmann and Hrvoje Fulgosi
Antioxidants 2023, 12(10), 1838; https://doi.org/10.3390/antiox12101838 - 10 Oct 2023
Cited by 2 | Viewed by 1846
Abstract
In vascular plants, the final photosynthetic electron transfer from ferredoxin (Fd) to NADP+ is catalyzed by the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). FNR is recruited to thylakoid membranes via an integral membrane protein TROL (thylakoid rhodanese-like protein) and the membrane associated protein [...] Read more.
In vascular plants, the final photosynthetic electron transfer from ferredoxin (Fd) to NADP+ is catalyzed by the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). FNR is recruited to thylakoid membranes via an integral membrane protein TROL (thylakoid rhodanese-like protein) and the membrane associated protein Tic62. We have previously demonstrated that the absence of TROL triggers a very efficient superoxide (O2•−) removal mechanism. The dynamic TROL–FNR interaction has been shown to be an apparently overlooked mechanism that maintains linear electron flow before alternative pathway(s) is(are) activated. In this work, we aimed to further test our hypothesis that the FNR–TROL pair could be the source element that triggers various downstream networks of chloroplast ROS scavenging. Tandem affinity purification followed by the MS analysis confirmed the TROL–FNR interaction and revealed possible interaction of TROL with the thylakoid form of the enzyme ascorbate peroxidase (tAPX), which catalyzes the H2O2-dependent oxidation of ascorbate and is, therefore, the crucial component of the redox homeostasis system in plants. Further, EPR analyses using superoxide spin trap DMPO showed that, in comparison with the wild type, plants overexpressing TROL (TROL OX) propagate more O2•− when exposed to high light stress. This indicates an increased sensitivity to oxidative stress in conditions when there is an excess of membrane-bound FNR and less free FNR is found in the stroma. Finally, immunohistochemical analyses of glutathione in different Arabidopsis leaf cell compartments showed highly elevated glutathione levels in TROL OX, indicating an increased demand for this ROS scavenger in these plants, likely needed to prevent the damage of important cellular components caused by reactive oxygen species. Full article
(This article belongs to the Special Issue Redox Regulation in Photosynthesis)
Show Figures

Figure 1

14 pages, 2118 KiB  
Article
The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin
by Daisuke Seo
Antioxidants 2023, 12(9), 1741; https://doi.org/10.3390/antiox12091741 - 8 Sep 2023
Cited by 3 | Viewed by 1623
Abstract
In the crystal structure of ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), Tyr50 stacks on the si-face of the isoalloxazine ring portion of the FAD prosthetic group. This configuration is highly conserved among the homodimeric ferredoxin-NAD(P)+ oxidoreductases (FNR) from [...] Read more.
In the crystal structure of ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), Tyr50 stacks on the si-face of the isoalloxazine ring portion of the FAD prosthetic group. This configuration is highly conserved among the homodimeric ferredoxin-NAD(P)+ oxidoreductases (FNR) from Gram-positive bacteria and photosynthetic bacteria. In this report, pre-steady state reactions of Tyr50 variants with NADP+/NADPH and ferredoxin from B. subtilis (BsFd) were examined with stopped-flow spectrophotometry to assess the effects of the mutation on the formation of FNR-substrate complexes and following redox equivalent transfer. Mixing oxidized BsFNRs with NADPH resulted in a rapid complex formation followed by a rate-limiting hydride transfer. The substitution substantially modulated the intensity of the charge transfer absorption band and decreased the observed hydride transfer rates compared to the wild type. Reduction of the Y50W mutant by NADPH proceeded in a monophasic manner, while the Y50G and Y50S mutants did in biphasic phases. The reduced Tyr50 mutants hardly promoted the reduction of NADP+. Mixing oxidized BsFNRs with reduced BsFd resulted in the reduction of the FNRs. The observed FNR reduction rates of the three variants were comparable, but in the Y50G and Y50S mutants, the amount of the reduced FNR at the rapid phase was decreased, and a slow FNR reduction phase was observed. The obtained results suggest that the replacements of Tyr50 with Gly and Ser permitted the conformational change in the reduced form, which induced an asymmetric kinetic behavior between the protomers of the homodimeric BsFNR. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

21 pages, 10266 KiB  
Article
Functional Diversity of Homologous Oxidoreductases—Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction
by Marta Hammerstad, Anne Kristine Rugtveit, Sondov Dahlen, Hilde Kristin Andersen and Hans-Petter Hersleth
Antioxidants 2023, 12(6), 1224; https://doi.org/10.3390/antiox12061224 - 6 Jun 2023
Viewed by 2280
Abstract
Although bacterial thioredoxin reductase-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases (FNRs) are similar in terms of primary sequences and structures, they participate in diverse biological processes by catalyzing a range of different redox reactions. Many of the reactions are critical for the growth, survival of, [...] Read more.
Although bacterial thioredoxin reductase-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases (FNRs) are similar in terms of primary sequences and structures, they participate in diverse biological processes by catalyzing a range of different redox reactions. Many of the reactions are critical for the growth, survival of, and infection by pathogens, and insight into the structural basis for substrate preference, specificity, and reaction kinetics is crucial for the detailed understanding of these redox pathways. Bacillus cereus (Bc) encodes three FNR paralogs, two of which have assigned distinct biological functions in bacillithiol disulfide reduction and flavodoxin (Fld) reduction. Bc FNR2, the endogenous reductase of the Fld-like protein NrdI, belongs to a distinct phylogenetic cluster of homologous oxidoreductases containing a conserved His residue stacking the FAD cofactor. In this study, we have assigned a function to FNR1, in which the His residue is replaced by a conserved Val, in the reduction of the heme-degrading monooxygenase IsdG, ultimately facilitating the release of iron in an important iron acquisition pathway. The Bc IsdG structure was solved, and IsdG-FNR1 interactions were proposed through protein–protein docking. Mutational studies and bioinformatics analyses confirmed the importance of the conserved FAD-stacking residues on the respective reaction rates, proposing a division of FNRs into four functionally unique sequence similarity clusters likely related to the nature of this residue. Full article
(This article belongs to the Special Issue Interactions of Redox-Active Proteins and Their Substrates)
Show Figures

Graphical abstract

25 pages, 4882 KiB  
Review
Roles of Ferredoxin-NADP+ Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems
by Takashi Iyanagi
Antioxidants 2022, 11(11), 2143; https://doi.org/10.3390/antiox11112143 - 29 Oct 2022
Cited by 20 | Viewed by 5971
Abstract
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and [...] Read more.
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system. In this review, the roles of the plant FNR-Fd and FNR-Fld complex pairs were compared to those of the diflavin reductase (FAD-FMN) family. In the final section, evolutionary aspects of NAD(P)H-dependent multi-domain electron transfer systems are discussed. Full article
Show Figures

Figure 1

16 pages, 3354 KiB  
Article
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002
by Xiying Li, Chenhui Huang, Peijun Wei, Kun Zhang, Chunxia Dong, Qing Lan, Zhenggao Zheng, Zhengdong Zhang and Jindong Zhao
Microorganisms 2022, 10(7), 1313; https://doi.org/10.3390/microorganisms10071313 - 29 Jun 2022
Cited by 6 | Viewed by 2813
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of [...] Read more.
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

14 pages, 2000 KiB  
Article
Thioredoxin Reductase-Type Ferredoxin: NADP+ Oxidoreductase of Rhodopseudomonas palustris: Potentiometric Characteristics and Reactions with Nonphysiological Oxidants
by Mindaugas Lesanavičius, Daisuke Seo and Narimantas Čėnas
Antioxidants 2022, 11(5), 1000; https://doi.org/10.3390/antiox11051000 - 19 May 2022
Cited by 4 | Viewed by 2433
Abstract
Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint [...] Read more.
Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint potential of the FAD cofactor to be −0.285 V. 5-Deaza-FMN-sensitized photoreduction revealed −0.017 V separation of the redox potentials between the first and second electron transfer events. We examined the mechanism of oxidation of RpFNR by several different groups of nonphysiological electron acceptors. The kcat/Km values of quinones and aromatic N-oxides toward RpFNR increase with their single-electron reduction midpoint potential. The lower reactivity, mirroring their lower electron self-exchange rate, is also seen to have a similar trend for nitroaromatic compounds. A mixed single- and two-electron reduction was characteristic of quinones, with single-electron reduction accounting for 54% of the electron flux, whereas nitroaromatics were reduced exclusively via single-electron reduction. It is highly possible that the FADH· to FAD oxidation reaction is the rate-limiting step during the reoxidation of reduced FAD. The calculated electron transfer distances in the reaction with quinones and nitroaromatics were close to those of Anabaena and Plasmodium falciparum FNRs, thus demonstrating their similar “intrinsic” reactivity. Full article
Show Figures

Figure 1

17 pages, 3781 KiB  
Article
Cyclic Electron Flow-Coupled Proton Pumping in Synechocystis sp. PCC6803 Is Dependent upon NADPH Oxidation by the Soluble Isoform of Ferredoxin:NADP-Oxidoreductase
by Neil T. Miller, Ghada Ajlani and Robert L. Burnap
Microorganisms 2022, 10(5), 855; https://doi.org/10.3390/microorganisms10050855 - 21 Apr 2022
Cited by 6 | Viewed by 2842
Abstract
Ferredoxin:NADP-oxidoreductase (FNR) catalyzes the reversible exchange of electrons between ferredoxin (Fd) and NADP(H). Reduction of NADP+ by Fd via FNR is essential in the terminal steps of photosynthetic electron transfer, as light-activated electron flow produces NADPH for CO2 assimilation. FNR also [...] Read more.
Ferredoxin:NADP-oxidoreductase (FNR) catalyzes the reversible exchange of electrons between ferredoxin (Fd) and NADP(H). Reduction of NADP+ by Fd via FNR is essential in the terminal steps of photosynthetic electron transfer, as light-activated electron flow produces NADPH for CO2 assimilation. FNR also catalyzes the reverse reaction in photosynthetic organisms, transferring electrons from NADPH to Fd, which is important in cyanobacteria for respiration and cyclic electron flow (CEF). The cyanobacterium Synechocystis sp. PCC6803 possesses two isoforms of FNR, a large form attached to the phycobilisome (FNRL) and a small form that is soluble (FNRS). While both isoforms are capable of NADPH oxidation or NADP+ reduction, FNRL is most abundant during typical growth conditions, whereas FNRS accumulates under stressful conditions that require enhanced CEF. Because CEF-driven proton pumping in the light–dark transition is due to NDH-1 complex activity and they are powered by reduced Fd, CEF-driven proton pumping and the redox state of the PQ and NADP(H) pools were investigated in mutants possessing either FNRL or FNRS. We found that the FNRS isoform facilitates proton pumping in the dark–light transition, contributing more to CEF than FNRL. FNRL is capable of providing reducing power for CEF-driven proton pumping, but only after an adaptation period to illumination. The results support that FNRS is indeed associated with increased cyclic electron flow and proton pumping, which is consistent with the idea that stress conditions create a higher demand for ATP relative to NADPH. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

13 pages, 909 KiB  
Article
Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1)
by Aušra Nemeikaitė-Čėnienė, Jonas Šarlauskas, Lina Misevičienė, Audronė Marozienė, Violeta Jonušienė, Mindaugas Lesanavičius and Narimantas Čėnas
Int. J. Mol. Sci. 2020, 21(22), 8754; https://doi.org/10.3390/ijms21228754 - 19 Nov 2020
Cited by 5 | Viewed by 3121
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. [...] Read more.
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

15 pages, 2153 KiB  
Article
Reactions of Plasmodium falciparum Ferredoxin:NADP+ Oxidoreductase with Redox Cycling Xenobiotics: A Mechanistic Study
by Mindaugas Lesanavičius, Alessandro Aliverti, Jonas Šarlauskas and Narimantas Čėnas
Int. J. Mol. Sci. 2020, 21(9), 3234; https://doi.org/10.3390/ijms21093234 - 2 May 2020
Cited by 17 | Viewed by 3231
Abstract
Ferredoxin:NADP+ oxidoreductase from Plasmodium falciparum (PfFNR) catalyzes the NADPH-dependent reduction of ferredoxin (PfFd), which provides redox equivalents for the biosynthesis of isoprenoids and fatty acids in the apicoplast. Like other flavin-dependent electrontransferases, PfFNR is a potential source [...] Read more.
Ferredoxin:NADP+ oxidoreductase from Plasmodium falciparum (PfFNR) catalyzes the NADPH-dependent reduction of ferredoxin (PfFd), which provides redox equivalents for the biosynthesis of isoprenoids and fatty acids in the apicoplast. Like other flavin-dependent electrontransferases, PfFNR is a potential source of free radicals of quinones and other redox cycling compounds. We report here a kinetic study of the reduction of quinones, nitroaromatic compounds and aromatic N-oxides by PfFNR. We show that all these groups of compounds are reduced in a single-electron pathway, their reactivity increasing with the increase in their single-electron reduction midpoint potential (E17). The reactivity of nitroaromatics is lower than that of quinones and aromatic N-oxides, which is in line with the differences in their electron self-exchange rate constants. Quinone reduction proceeds via a ping-pong mechanism. During the reoxidation of reduced FAD by quinones, the oxidation of FADH. to FAD is the possible rate-limiting step. The calculated electron transfer distances in the reaction of PfFNR with various electron acceptors are similar to those of Anabaena FNR, thus demonstrating their similar “intrinsic” reactivity. Ferredoxin stimulated quinone- and nitro-reductase reactions of PfFNR, evidently providing an additional reduction pathway via reduced PfFd. Based on the available data, PfFNR and possibly PfFd may play a central role in the reductive activation of quinones, nitroaromatics and aromatic N-oxides in P. falciparum, contributing to their antiplasmodial action. Full article
(This article belongs to the Special Issue Flavin Adenine Dinucleotide (FAD): Biosynthesis and Function)
Show Figures

Figure 1

15 pages, 1510 KiB  
Article
Antiplasmodial Activity of Nitroaromatic Compounds: Correlation with Their Reduction Potential and Inhibitory Action on Plasmodium falciparum Glutathione Reductase
by Audronė Marozienė, Mindaugas Lesanavičius, Elisabeth Davioud-Charvet, Alessandro Aliverti, Philippe Grellier, Jonas Šarlauskas and Narimantas Čėnas
Molecules 2019, 24(24), 4509; https://doi.org/10.3390/molecules24244509 - 10 Dec 2019
Cited by 22 | Viewed by 3261
Abstract
With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = [...] Read more.
With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = 23), and their ability to inhibit P. falciparum glutathione reductase (PfGR). The reactivity of nitroaromatics in PfFNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E17). Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards PfGR with respect to NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E17 values, octanol/water distribution coefficients at pH 7.0 (log D), and their activity as PfGR inhibitors. Our data demonstrate that both factors, the ease of reductive activation and the inhibition of PfGR, are important in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by single-electron transferring dehydrogenases-electrontransferases. Full article
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Effects of TROL Presequence Mutagenesis on Its Import and Dual Localization in Chloroplasts
by Lea Vojta, Andrea Čuletić and Hrvoje Fulgosi
Int. J. Mol. Sci. 2018, 19(2), 569; https://doi.org/10.3390/ijms19020569 - 14 Feb 2018
Cited by 6 | Viewed by 4120
Abstract
Thylakoid rhodanase-like protein (TROL) is involved in the final step of photosynthetic electron transport from ferredoxin to ferredoxin: NADP+ oxidoreductase (FNR). TROL is located in two distinct chloroplast compartments—in the inner envelope of chloroplasts, in its precursor form; and in the thylakoid [...] Read more.
Thylakoid rhodanase-like protein (TROL) is involved in the final step of photosynthetic electron transport from ferredoxin to ferredoxin: NADP+ oxidoreductase (FNR). TROL is located in two distinct chloroplast compartments—in the inner envelope of chloroplasts, in its precursor form; and in the thylakoid membranes, in its fully processed form. Its role in the inner envelope, as well as the determinants for its differential localization, have not been resolved yet. In this work we created six N-terminal amino acid substitutions surrounding the predicted processing site in the presequence of TROL in order to obtain a construct whose import is affected or localization limited to a single intrachloroplastic site. By using in vitro transcription and translation and subsequent protein import methods, we found that a single amino acid exchange in the presequence, Ala67 to Ile67 interferes with processing in the stroma and directs the whole pool of in vitro translated TROL to the inner envelope of chloroplasts. This result opens up the possibility of studying the role of TROL in the chloroplast inner envelope as well as possible consequence/s of its absence from the thylakoids. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

Back to TopTop