Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fermented Perilla frutescens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3524 KiB  
Article
Ameliorating Effect of Fermented Perilla frutescens on Sleep Deprivation-Induced Cognitive Impairment Through Antioxidant and BDNF Signaling in Mice
by Chae-Ryeong Seo, Bo Kyung Lee, Hye Jin Jee, Jae Ryeong Yoo, Chul-Kyu Lee, Jin Wook Park and Yi-Sook Jung
Nutrients 2024, 16(23), 4224; https://doi.org/10.3390/nu16234224 - 6 Dec 2024
Viewed by 1454
Abstract
Background: Adequate sleep is essential for maintaining cognitive function, as evidenced by literature. Perilla frutescens var. acuta Kudo (PF) is a traditional medicinal herb reported to improve vascular cognitive impairment and induce sedation. However, the effects of PF on cognitive impairment caused by [...] Read more.
Background: Adequate sleep is essential for maintaining cognitive function, as evidenced by literature. Perilla frutescens var. acuta Kudo (PF) is a traditional medicinal herb reported to improve vascular cognitive impairment and induce sedation. However, the effects of PF on cognitive impairment caused by sleep deprivation (SD) have not yet been evaluated. This study aims to evaluate the effects of fermented PF (FPF) and its underlying mechanisms in a model of SD-induced cognitive impairment. Methods: Mice were subjected to SD to establish cognitive impairment, and FPF was administered once daily for 3 days. Cognitive performance was assessed using Y-maze and passive avoidance tests, followed by molecular mechanisms analyses. Results: FPF treatment improved SD-induced cognitive impairment, as evidenced by increased spontaneous alternation and extended latency time. Histological analysis revealed that SD impaired the hippocampus, and this impairment was alleviated by FPF treatment. FPF demonstrated antioxidant activity by increasing glutathione levels and decreasing malondialdehyde levels. Furthermore, the decreased levels of brain-derived neurotrophic factor (BDNF) observed in sleep-deprived mice were restored with FPF treatment. FPF also enhanced the phosphorylation of tropomyosin receptor kinase B, extracellular signal-regulated kinase, and cAMP response element-binding protein. Conclusions: These results indicate that FPF may have beneficial effects on SD-induced cognitive impairment by protecting against oxidative stress and increasing BDNF expression. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

15 pages, 6359 KiB  
Article
Inhibition of Perilla frutescens Essential Oil on Pellicle Formation of Candida tropicalis and Pichia kluyveri and Its Effect on Volatile Compounds in Sichuan Pickles
by Ting Cai, Pei Shi, Shan Zhang, Wenliang Xiang, Junyu Liu, Zixi Lin and Jie Tang
Foods 2023, 12(8), 1593; https://doi.org/10.3390/foods12081593 - 9 Apr 2023
Cited by 7 | Viewed by 2510
Abstract
Pellicle formation is the most typical characteristic of deteriorating fermented vegetable products. Perilla frutescens essential oil (PEO) is widely used as a useful natural preservative. However, few studies have addressed the antifungal activity and mechanism of PEO in pellicle formation microorganisms, and it [...] Read more.
Pellicle formation is the most typical characteristic of deteriorating fermented vegetable products. Perilla frutescens essential oil (PEO) is widely used as a useful natural preservative. However, few studies have addressed the antifungal activity and mechanism of PEO in pellicle formation microorganisms, and it is still unclear whether it can inhibit pellicle formation and affect its volatile compounds in Sichuan pickles. The current study showed that PEO can inhibit pellicle formation during fermentation of Sichuan pickles as it had significant antifungal activity against the pellicle formation microorganisms Candida tropicalis SH1 and Pichia kluyveri SH2. The minimum inhibitory concentration (MIC) of PEO against C. tropicalis SH1 and P. kluyveri SH2 was determined to be 0.4 μL/mL, and the minimum fungicidal concentrations (MFCs) were 1.6 μL/mL and 0.8 μL/mL, respectively. The antifungal mechanism was activated as a result of damage to the cell membrane, an increase in the cell permeability, a decrease in the mitochondrial membrane potential, and the inhibition of ATPase activity. Meanwhile, the addition of PEO to Sichuan pickles can enrich the profiles of volatile compounds during fermentation, including limonene, myrcene, 1,8-cineole, linalool, perilla ketone, heptanal, hexanal, α-thujone and β-terpineol and thus improve the overall sensory acceptability. These results indicated that PEO has the potential to be used as a novel food preservative to control pellicle formation in fermented vegetables. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

20 pages, 4247 KiB  
Article
Fermented Perilla frutescens Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model
by Hye Jin Jee, Dajung Ryu, Suyeon Kim, Sung Hum Yeon, Rak Ho Son, Seung Hwan Hwang and Yi-Sook Jung
Int. J. Mol. Sci. 2023, 24(1), 622; https://doi.org/10.3390/ijms24010622 - 30 Dec 2022
Cited by 13 | Viewed by 4594
Abstract
Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep [...] Read more.
Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep deprivation (SD)-induced stress mice. SD-stressed mice revealed a remarkable increase in the immobility time in both forced swimming test and tail suspension test; this increase was ameliorated by treatment with FPF at doses of 100 and 150 mg/kg. FPF treatment also reduced the level of stress hormones such as corticosterone and adrenocorticotropic hormone. Additionally, FPF increased the levels of serotonin and dopamine which were significantly decreased in the brain tissues of SD-stressed mice. The increased expression of proinflammatory cytokines, such as TNF-α and IL1β, and the decreased expression of brain-derived neurotrophic factor (BDNF) in the stressed mice were significantly reversed by FPF treatment. Furthermore, FPF also increased phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular regulated protein kinase (ERK), and cAMP response element binding protein (CREB). Among the six components isolated from FPF, protocatechuic acid and luteolin-7-O-glucuronide exhibited significant antidepressant-like effects, suggesting that they are major active components. These findings suggest that FPF has therapeutic potential for SD-induced stress, by correcting dysfunction of hypothalamic-pituitary-adrenal axis and modulating the BDNF/TrkB/ERK/CREB signaling pathway. Full article
(This article belongs to the Special Issue Natural Products in Neurological Diseases)
Show Figures

Graphical abstract

Back to TopTop