Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = femtosecond laser ultrasonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3228 KB  
Article
Research on the Laser Ablation Threshold of the Graphene/Aluminum Foil Interface Surface
by Ying Xu, Yi Lv, Dongcheng Zhou, Yixin Chen and Boyong Su
Coatings 2025, 15(7), 853; https://doi.org/10.3390/coatings15070853 - 20 Jul 2025
Cited by 1 | Viewed by 1089
Abstract
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation [...] Read more.
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation threshold of the surface and interface of graphene coatings formed through ultrasonic spraying. The ablation threshold of the coating–substrate interface is verified by numerical simulation. Incorporating the data of groove width and depth obtained from a three-dimensional profilometer and finite element simulation, an in-depth analysis of the threshold conditions of laser ablation in coating materials is accomplished. The results indicate that when the femtosecond laser frequency is 10 kHz, the pulse width is 290 fs, and the energy density reaches 0.057 J/cm2, the graphene material can be effectively removed. When the energy density is elevated to 2.167 J/cm2, a complete ablation of a graphite coating with a thickness of 1.5 μm can be achieved. The findings of this study validate the evolution law and linear relationship of ablation crater morphology, offering new references for microstructure design and the selection of controllable laser processing parameters. Full article
Show Figures

Figure 1

14 pages, 45842 KB  
Article
A Comparative Study on the Effect of Substrate Structure on Electrochemical Performance and Stability of Electrodeposited Platinum and Iridium Oxide Coatings for Neural Electrodes
by Linze Li, Changqing Jiang and Luming Li
Micromachines 2024, 15(1), 70; https://doi.org/10.3390/mi15010070 - 29 Dec 2023
Cited by 9 | Viewed by 3061
Abstract
Implantable electrodes are crucial for stimulation safety and recording quality of neuronal activity. To enhance their electrochemical performance, electrodeposited nanostructured platinum (nanoPt) and iridium oxide (IrOx) have been proposed due to their advantages of in situ deposition and ease of processing. [...] Read more.
Implantable electrodes are crucial for stimulation safety and recording quality of neuronal activity. To enhance their electrochemical performance, electrodeposited nanostructured platinum (nanoPt) and iridium oxide (IrOx) have been proposed due to their advantages of in situ deposition and ease of processing. However, their unstable adhesion has been a challenge in practical applications. This study investigated the electrochemical performance and stability of nanoPt and IrOx coatings on hierarchical platinum-iridium (Pt-Ir) substrates prepared by femtosecond laser, compared with the coatings on smooth Pt-Ir substrates. Ultrasonic testing, agarose gel testing, and cyclic voltammetry (CV) testing were used to evaluate the coatings’ stability. Results showed that the hierarchical Pt-Ir substrate significantly enhanced the charge-storage capacity of electrodes with both coatings to more than 330 mC/cm2, which was over 75 times that of the smooth Pt-Ir electrode. The hierarchical substrate could also reduce the cracking of nanoPt coatings after ultrasonic, agarose gel and CV testing. Although some shedding was observed in the IrOx coating on the hierarchical substrate after one hour of sonication, it showed good stability in the agarose gel and CV tests. Stable nanoPt and IrOx coatings may not only improve the electrochemical performance but also benefit the function of neurobiochemical detection. Full article
(This article belongs to the Special Issue Neural Interface: From Material to System)
Show Figures

Figure 1

15 pages, 33484 KB  
Article
The Impact of Mechanical Debridement Techniques on Titanium Implant Surfaces: A Comparison of Sandblasted, Acid-Etched, and Femtosecond Laser-Treated Surfaces
by Seung-Mo Eun, Keunbada Son, Sung-Min Hwang, Young-Tak Son, Yong-Gun Kim, Jo-Young Suh, Jun Ho Hwang, Sung-Min Kwon, Jong Hoon Lee, Hyun Deok Kim, Kyu-Bok Lee and Jae-Mok Lee
J. Funct. Biomater. 2023, 14(10), 502; https://doi.org/10.3390/jfb14100502 - 9 Oct 2023
Cited by 4 | Viewed by 3169
Abstract
This study evaluated the effects of various mechanical debridement methods on the surface roughness (Ra) of dental implants, comparing femtosecond laser-treated surfaces with conventionally machined and sandblasted with large-grit sand and acid-etched (SLA) implant surfaces. The fabrication of grade 4 titanium (Ti) disks [...] Read more.
This study evaluated the effects of various mechanical debridement methods on the surface roughness (Ra) of dental implants, comparing femtosecond laser-treated surfaces with conventionally machined and sandblasted with large-grit sand and acid-etched (SLA) implant surfaces. The fabrication of grade 4 titanium (Ti) disks (10 mm in diameter and 1 mm thick) and the SLA process were carried out by a dental implant manufacturer (DENTIS; Daegu, Republic of Korea). Subsequently, disk surfaces were treated with various methods: machined, SLA, and femtosecond laser. Disks of each surface-treated group were post-treated with mechanical debridement methods: Ti curettes, ultrasonic scaler, and Ti brushes. Scanning electron microscopy, Ra, and wettability were evaluated. Statistical analysis was performed using the Kruskal–Wallis H test, with post-hoc analyses conducted using the Bonferroni correction (α = 0.05). In the control group, no significant difference in Ra was observed between the machined and SLA groups. However, femtosecond laser-treated surfaces exhibited higher Ra than SLA surfaces (p < 0.05). The application of Ti curette or brushing further accentuated the roughness of the femtosecond laser-treated surfaces, whereas scaling reduced the Ra in SLA surfaces. Femtosecond laser-treated implant surfaces, with their unique roughness and compositional attributes, are promising alternatives in dental implant surface treatments. Full article
(This article belongs to the Special Issue New Trends in Biomaterials and Implants for Dentistry)
Show Figures

Figure 1

15 pages, 17651 KB  
Article
Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling
by Kay Bischoff, Cemal Esen and Ralf Hellmann
Nanomaterials 2023, 13(19), 2693; https://doi.org/10.3390/nano13192693 - 2 Oct 2023
Cited by 9 | Viewed by 2280
Abstract
This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a [...] Read more.
This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 nm and 20 μm, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 nm, no agglomerates larger than 1 μm and a trimodal particle size distribution with the median at 50 nm already, after 100 min of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 μm to 88 nm by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of 0.28Ω/sq and a copper mass concentration of 94.2%. Full article
Show Figures

Figure 1

9 pages, 1763 KB  
Article
Picosecond Ultrasonics for Studying Elastic Modulus of Polycrystalline Chromium Nanofilms: Thickness Dependence and Stiffness Enhancement
by Xinhao Tu, Jun Li, Jinyu Yan, Shibin Wang, Linan Li, Chuanwei Li and Zhiyong Wang
Coatings 2023, 13(2), 438; https://doi.org/10.3390/coatings13020438 - 15 Feb 2023
Cited by 1 | Viewed by 2469
Abstract
Accurate measurement of elastic constants in thin films is still an important issue to understand the scale behavior of nanosized materials. In the present study, we introduced an advanced non-destructive method, picosecond ultrasonics (PU), for measuring the out-of-plane elastic modulus of thin chromium [...] Read more.
Accurate measurement of elastic constants in thin films is still an important issue to understand the scale behavior of nanosized materials. In the present study, we introduced an advanced non-destructive method, picosecond ultrasonics (PU), for measuring the out-of-plane elastic modulus of thin chromium (Cr) films. The femtosecond light pulse is focused on the Cr film to excite the longitudinal acoustic phonons (LAP), which propagate along the thickness direction and repeat reflections inside the Cr film. Then, the propagation/distribution of LAP is detected by the time-delayed probe light pulse through the photoelastic effect. Therefore, we can determine the out-of-plane modulus by measuring the periodic pulse echoes or the breathing mode vibrations within the Cr film. For most Cr films, the determined modulus is smaller than the corresponding bulk value and decreases with the decreasing thickness, while for some Cr films, it closes and may exceed the bulk value. This work describes the thickness-dependent elasticity of thin Cr films and provides evidence of the stiffness enhancement in Cr films on the Si substrate. In addition, since LAP with central frequency up to 310 GHz is excited in Cr films on the SiO2 substrate, we also demonstrate the potential of Cr films as high-frequency photoacoustic transducers. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

13 pages, 4776 KB  
Article
Direct Underwater Sound Velocity Measurement Based on the Acousto-Optic Self-Interference Effect between the Chirp Signal and the Optical Frequency Comb
by Zihui Yang, Fanpeng Dong, Hongguang Liu, Xiaoxia Yang, Zhiwei Li and Bin Xue
J. Mar. Sci. Eng. 2023, 11(1), 18; https://doi.org/10.3390/jmse11010018 - 23 Dec 2022
Cited by 2 | Viewed by 2836
Abstract
Underwater sound speed plays a vital role in maritime safety. Based on the acousto-optic self-interference effect, we proposed a new method to measure underwater sound speed utilizing Raman–Nath diffraction, generated by the acousto-optic effect between an optical frequency comb and pulsed chirp signal. [...] Read more.
Underwater sound speed plays a vital role in maritime safety. Based on the acousto-optic self-interference effect, we proposed a new method to measure underwater sound speed utilizing Raman–Nath diffraction, generated by the acousto-optic effect between an optical frequency comb and pulsed chirp signal. When the pulsed chirp travels between the measurement and reference arm in the experimental setup that we constructed, the same signal resulting from acousto-optic self-interference is produced. The time gap between the two identical signals represents the time interval. Thus, we can determine the time-of-flight using cross-correlation. The optical path difference between the two arms is double the flight distance of ultrasonic waves and can easily be obtained using femtosecond laser interferometry. The time gap and the distance can be used to measure sound speed. The experimental results show that the chirp signal improves the signal-to-noise ratio and expands the applicable time-of-flight algorithm. The waveform pulse width after cross-correlation is 1.5 μs, compared with 40 μs before. The time-of-flight uncertainty can achieve 1.03 ns compared to 8.6 ns before. Uncertainty of sound velocity can achieve 0.026 m/s. Full article
(This article belongs to the Special Issue Application of Advanced Technologies in Maritime Safety)
Show Figures

Figure 1

7 pages, 1294 KB  
Communication
Metastable Crystallization by Drop Impact
by Akari Nishigaki, Mihoko Maruyama, Shun-ichi Tanaka, Hiroshi Y. Yoshikawa, Masayuki Imanishi, Masashi Yoshimura, Yusuke Mori and Kazufumi Takano
Crystals 2022, 12(8), 1104; https://doi.org/10.3390/cryst12081104 - 6 Aug 2022
Cited by 2 | Viewed by 2451
Abstract
It has been reported that cavitation bubbles (air–liquid interface) by femtosecond laser and ultrasonic irradiations are effective for metastable phase crystallization in polymorph control. It has also been noted that cavitation bubbles are generated by mechanical shock when dropping a vial. Here we [...] Read more.
It has been reported that cavitation bubbles (air–liquid interface) by femtosecond laser and ultrasonic irradiations are effective for metastable phase crystallization in polymorph control. It has also been noted that cavitation bubbles are generated by mechanical shock when dropping a vial. Here we describe the crystallization of acetaminophen by drop impact. In the condition where spontaneous nucleation did not occur, the drop impact produced the metastable form (form II) and trihydrate. This supports the potency of the air–liquid interface in metastable phase formation. Furthermore, crystallization by drop impact is a completely new phenomenon, and new developments are expected in the future. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

11 pages, 14490 KB  
Article
MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Waves
by Jan Niklas Haus, Walter Lang, Thomas Roloff, Liv Rittmeier, Sarah Bornemann, Michael Sinapius and Andreas Dietzel
Sensors 2022, 22(14), 5368; https://doi.org/10.3390/s22145368 - 19 Jul 2022
Cited by 9 | Viewed by 4655
Abstract
Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, [...] Read more.
Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, we developed a robust MEMS vibrometer that can be integrated while maintaining the structural and functional compliance of the laminate. This vibrometer is directly sensitive to the high-frequency displacements from structure-borne ultrasound when excited in a frequency range between its first and second eigenfrequency. The vibrometer is mostly realized by processes earlier developed for a pressure sensor but with additional femtosecond laser ablation and encapsulation. The piezoresistive transducer, made from silicon, is encapsulated between top and bottom glass lids. The eigenfrequencies are experimentally determined using an optical micro vibrometer setup. The MEMS vibrometer functionality and usability for structural health monitoring are demonstrated on a customized test rig by recording application-relevant guided ultrasonic wave packages with a central frequency of 100 kHz at a distance of 0.2 m from the exciting ultrasound transducer. Full article
Show Figures

Figure 1

9 pages, 3080 KB  
Article
Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique
by Yun Young Kim
Materials 2022, 15(6), 2165; https://doi.org/10.3390/ma15062165 - 15 Mar 2022
Cited by 6 | Viewed by 3811
Abstract
Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In [...] Read more.
Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young’s modulus by 13.6–78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young’s modulus was not significant. Full article
(This article belongs to the Special Issue Thermophysical Properties of Materials)
Show Figures

Figure 1

5 pages, 2233 KB  
Proceeding Paper
Micro-Oscillator as Integrable Sensor for Structure-Borne Ultrasound
by Jan Niklas Haus, Liv Rittmeier, Thomas Roloff, Andrey Mikhaylenko, Sarah Bornemann, Michael Sinapius, Natalie Rauter, Walter Lang and Andreas Dietzel
Eng. Proc. 2021, 10(1), 81; https://doi.org/10.3390/ecsa-8-11313 - 1 Nov 2021
Cited by 3 | Viewed by 1672
Abstract
Motivated by their functional conformity, micro-cantilever-based MEMS oscillators are investigated in this study as structure-integrable transducers for the acquisition of guided ultrasonic waves in fiber–metal laminates. While acceleration-sensitive oscillators are limited in their maximum frequency, the presented displacement-sensitive oscillator is operated quasi-free in [...] Read more.
Motivated by their functional conformity, micro-cantilever-based MEMS oscillators are investigated in this study as structure-integrable transducers for the acquisition of guided ultrasonic waves in fiber–metal laminates. While acceleration-sensitive oscillators are limited in their maximum frequency, the presented displacement-sensitive oscillator is operated quasi-free in the fashion of a seismometer, making it particularly sensitive for high-frequency displacements above the sensor’s resonance frequency. The potential of this non-traditional application of a seismometer for the acquisition of structure-borne ultrasound is demonstrated experimentally. Therefore, MEMS oscillators are formed from the membrane of established pressure sensors by femtosecond laser micro-machining and mounted onto a setup for stimulation by structure-borne ultrasound. Experimental results indicate the targeted proportionality of the high-frequency stimulus and the sensor response. In conclusion, MEMS oscillators enable acquisition of high-frequency displacements and could therefore serve as structure-integrable sensors for guided ultrasonic waves. Full article
Show Figures

Figure 1

28 pages, 12057 KB  
Review
Progress in Non-Traditional Processing for Fabricating Superhydrophobic Surfaces
by Dili Shen, Wuyi Ming, Xinggui Ren, Zhuobin Xie and Xuewen Liu
Micromachines 2021, 12(9), 1003; https://doi.org/10.3390/mi12091003 - 24 Aug 2021
Cited by 20 | Viewed by 4692
Abstract
When the water droplets are on some superhydrophobic surfaces, the surface only needs to be inclined at a very small angle to make the water droplets roll off. Hence, building a superhydrophobic surface on the material substrate, especially the metal substrate, can effectively [...] Read more.
When the water droplets are on some superhydrophobic surfaces, the surface only needs to be inclined at a very small angle to make the water droplets roll off. Hence, building a superhydrophobic surface on the material substrate, especially the metal substrate, can effectively alleviate the problems of its inability to resist corrosion and easy icing during use, and it can also give it special functions such as self-cleaning, lubrication, and drag reduction. Therefore, this study reviews and summarizes the development trends in the fabrication of superhydrophobic surface materials by non-traditional processing techniques. First, the principle of the superhydrophobic surfaces fabricated by laser beam machining (LBM) is introduced, and the machining performances of the LBM process, such as femtosecond laser, picosecond laser, and nanosecond laser, for fabricating the surfaces are compared and summarized. Second, the principle and the machining performances of the electrical discharge machining (EDM), for fabricating the superhydrophobic surfaces, are reviewed and compared, respectively. Third, the machining performances to fabricate the superhydrophobic surfaces by the electrochemical machining (ECM), including electrochemical oxidation process and electrochemical reduction process, are reviewed and grouped by materials fabricated. Lastly, other non-traditional machining processes for fabricating superhydrophobic surfaces, such as ultrasonic machining (USM), water jet machining (WJM), and plasma spraying machining (PSM), are compared and summarized. Moreover, the advantage and disadvantage of the above mentioned non-traditional machining processes are discussed. Thereafter, the prospect of non-traditional machining for fabricating the desired superhydrophobic surfaces is proposed. Full article
(This article belongs to the Special Issue Micromachining Method for Surface Morphology)
Show Figures

Graphical abstract

13 pages, 3687 KB  
Article
SnSe Nanosheets: From Facile Synthesis to Applications in Broadband Photodetections
by Xiangyang Li, Zongpeng Song, Huancheng Zhao, Wenfei Zhang, Zhenhua Sun, Huawei Liang, Haiou Zhu, Jihong Pei, Ling Li and Shuangchen Ruan
Nanomaterials 2021, 11(1), 49; https://doi.org/10.3390/nano11010049 - 27 Dec 2020
Cited by 13 | Viewed by 4321
Abstract
In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe [...] Read more.
In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe NSs was systematically investigated via a femtosecond transient absorption spectroscopy in the visible wavelength regime and three decay components were clarified with delay time of τ1 = 0.77 ps, τ2 = 8.3 ps, and τ3 = 316.5 ps, respectively, indicating their potential applications in ultrafast optics and optoelectronics. As a proof-of-concept, the photodetectors, which integrated SnSe NSs with monolayer graphene, show high photoresponsivities and excellent response speeds for different incident lasers. The maximum photo-responsivities for 405, 532, and 785 nm were 1.75 × 104 A/W, 4.63 × 103 A/W, and 1.52 × 103 A/W, respectively. The photoresponse times were ~22.6 ms, 11.6 ms, and 9.7 ms. This behavior was due to the broadband light response of SnSe NSs and fast transportation of photocarriers between the monolayer graphene and SnSe NSs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

11 pages, 3254 KB  
Article
Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses
by Zeyad Almutairi, Kaleem Ahmad, Mosaad Alanazi and Abdulaziz Alhazaa
Appl. Sci. 2019, 9(19), 4022; https://doi.org/10.3390/app9194022 - 26 Sep 2019
Cited by 3 | Viewed by 3939
Abstract
There are continued efforts to process and join single wall carbon nanotubes (SWCNTs) in order to exploit their exceptional functional properties for real-world applications. In this work, we report experimental observations of femtosecond laser irradiation on SWCNTs, in order to process and join [...] Read more.
There are continued efforts to process and join single wall carbon nanotubes (SWCNTs) in order to exploit their exceptional functional properties for real-world applications. In this work, we report experimental observations of femtosecond laser irradiation on SWCNTs, in order to process and join them through an efficient and cost-effective technique. The nanotubes were deagglomerated in ethanol by an ultrasonicator and thin slurries of SWCNTs were spread evenly on glass substrates. A laser micromachining workstation for laboratory FemtoLAB (workshop of photonics) has been employed to irradiate the different SWCNTs film samples. The effect of laser parameters, such as pulse wavelength, laser power, etc., were systematically tuned to see the possibility of joining the SWCNTs ropes. Several experiments have been performed to optimize the parameters on different samples of SWCNTs. In general, the nanotubes were mostly damaged by the infrared (1st harmonics femtosecond laser) irradiation on the focal plane. However, the less damaging effect was observed for second harmonics (green wavelength) irradiation. The results suggest some joining of nanotubes along the sides of the focus plane, as well as on the center at the brink of nanotubes. The joining is considered to be established within the region of the high field intensity of the exposed femtosecond laser beam. Full article
(This article belongs to the Special Issue Selected Papers from the NMJ2018)
Show Figures

Figure 1

34 pages, 18080 KB  
Review
Fiber Bragg Grating Sensors for the Oil Industry
by Xueguang Qiao, Zhihua Shao, Weijia Bao and Qiangzhou Rong
Sensors 2017, 17(3), 429; https://doi.org/10.3390/s17030429 - 23 Feb 2017
Cited by 189 | Viewed by 17769
Abstract
With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group’s research into fiber Bragg gratings (FBGs) [...] Read more.
With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group’s research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors’ amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Bragg Grating Sensing)
Show Figures

Figure 1

Back to TopTop