Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = factor analysis (FA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13113 KiB  
Article
Ambient Particulate Matter Exposure Impairs Gut Barrier Integrity and Disrupts Goblet Cell Function
by Wanhao Gao, Wang Lin, Miao Tian, Shilang Fan, Sabrina Edwards, Joanne Tran, Yuanjing Li and Xiaoquan Rao
Biomedicines 2025, 13(8), 1825; https://doi.org/10.3390/biomedicines13081825 - 25 Jul 2025
Viewed by 329
Abstract
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure [...] Read more.
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure has been shown to alter microbiota composition and diversity in human and animal models. However, its impact on goblet cells and gut mucus barrier integrity remains unclear. Methods: To address this, 8-week-old male and female interleukin-10 knockout (IL10−/−) mice, serving as a spontaneous colitis model, were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure system for 17 weeks. Colon tissues from the PM2.5-exposed mice and LS174T goblet cells were analyzed using H&E staining, transmission electron microscopy (TEM), and transcriptomic profiling. Results: The average PM2.5 concentration in the exposure chamber was 100.20 ± 13.79 µg/m3. PM2.5 exposure in the IL10−/− mice led to pronounced colon shortening, increased inflammatory infiltration, ragged villi brush borders, dense goblet cells with sparse enterocytes, and lipid droplet accumulation in mitochondria. Similar ultrastructure changes were exhibited in the LS174T goblet cells after PM2.5 exposure. Transcriptomic analysis revealed a predominantly upregulated gene expression spectrum, indicating an overall enhancement rather than suppression of metabolic activity after PM2.5 exposure. Integrated enrichment analyses, including GO, KEGG, and GSEA, showed enrichment in pathways related to oxidative stress, xenobiotic (exogenous compound) metabolism, and energy metabolism. METAFlux, a metabolic activity analysis, further substantiated that PM2.5 exposure induces a shift in cellular energy metabolism preference and disrupts redox homeostasis. Conclusions: The findings of exacerbated gut barrier impairment and goblet cell dysfunction following PM2.5 exposure provide new evidence of environmental factors contributing to colitis, highlighting new perspectives on its role in the pathogenesis of colitis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 2027 KiB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 375
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

16 pages, 5423 KiB  
Article
Effect of Nonlinear Constitutive Models on Seismic Site Response of Soft Reclaimed Soil Deposits
by Sadiq Shamsher, Myoung-Soo Won, Young-Chul Park, Yoon-Ho Park and Mohamed A. Sayed
J. Mar. Sci. Eng. 2025, 13(7), 1333; https://doi.org/10.3390/jmse13071333 - 11 Jul 2025
Viewed by 259
Abstract
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. [...] Read more.
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. Ground motions were scaled to bedrock peak ground accelerations (PGAs) corresponding to annual return periods (ARPs) of 1000, 2400, and 4800 years. Seismic response metrics include the ratio of GQ/H to MKZ shear strain, effective PGA (EPGA), and short- and long-term amplification factors (Fa and Fv). The results highlight the critical role of the site-to-motion period ratio (Tg/Tm) in controlling seismic behavior. Compared to the MKZ, the GQ/H model, which features strength correction and improved stiffness retention, predicts lower shear strains and higher surface spectral accelerations, particularly under strong shaking and shallow conditions. Model differences are most pronounced at low Tg/Tm values, where MKZ tends to underestimate amplification and overestimate strain due to its limited ability to reflect site-specific shear strength. Relative to code-based amplification factors, the GQ/H model yields lower short-term estimates, reflecting the disparity between stiff inland reference sites and the soft reclaimed conditions at Saemangeum. These findings emphasize the need for strength-calibrated constitutive models to improve the accuracy of site-specific seismic hazard assessments. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

19 pages, 5430 KiB  
Article
Porosity of Geopolymers Using Complementary Techniques of Image Analysis and Physical Adsorption of Gases
by Carlos A. Rosas-Casarez, Ramón Corral-Higuera, Susana P. Arredondo-Rea, José M. Gómez-Soberón, Manuel J. Chinchillas-Chinchillas, Margarita Rodríguez-Rodríguez, Manuel J. Pellegrini-Cervantes and Jesús M. Bernal-Camacho
Buildings 2025, 15(13), 2353; https://doi.org/10.3390/buildings15132353 - 4 Jul 2025
Viewed by 542
Abstract
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this [...] Read more.
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this study, three geopolymer mortar (GM) mixtures were prepared: the first was obtained with fly ash (FA) without mechanical grinding (GM_FA), the second with FA that required crushing and sieving through a #200 sieve (GM_FA_200), and the third was a GM with FA that required crushing and sieving through a #325 sieve (GM_FA_325). The main objective was to evaluate the porosity of the geopolymeric paste and the interfacial transition zone (ITZ) between the aggregate and the geopolymerization products. Due to the susceptibility of this area to develop higher porosity, which leads to reduced mechanical properties and durability, it has become a significant focus of investigation in materials such as concrete and mortar. These analyses were carried out using physical adsorption of gases (PAG), and a methodology for image analysis of GM microporosity was implemented using micrographs obtained from a scanning electron microscope (SEM) and processed with the NI Vision Assistant 8.6 software (VA). The results from both image analysis and physical adsorption demonstrated that the GM_FA_325 matrix exhibited 19% less porosity compared to the GM_FA matrix. The results confirmed that GMs are predominantly mesoporous. It was observed that GM_FA_325 has the lowest total porosity, resulting in a denser and more compact microstructure, which is a key factor in its mechanical performance and potential applications as an eco-friendly construction material for coatings and precast elements such as blocks, panels, and similar products. In addition, image analysis using VA is highlighted as an efficient, cost-effective, and complementary technique to PAG, enabling robust results and resource optimization. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Sustainable Construction)
Show Figures

Figure 1

29 pages, 3192 KiB  
Article
Bio-2FA-IoD: A Biometric-Enhanced Two-Factor Authentication Protocol for Secure Internet of Drones Operations
by Hyunseok Kim and Seunghyun Park
Mathematics 2025, 13(13), 2177; https://doi.org/10.3390/math13132177 - 3 Jul 2025
Viewed by 251
Abstract
The Internet of Drones (IoD) is rapidly expanding into sensitive applications, necessitating robust and efficient authentication. Traditional methods struggle against prevalent attacks, especially considering the unique vulnerabilities of the IoD, such as drone physical capture. This paper proposes Bio-2FA-IoD, a novel biometric-enhanced two-factor [...] Read more.
The Internet of Drones (IoD) is rapidly expanding into sensitive applications, necessitating robust and efficient authentication. Traditional methods struggle against prevalent attacks, especially considering the unique vulnerabilities of the IoD, such as drone physical capture. This paper proposes Bio-2FA-IoD, a novel biometric-enhanced two-factor authentication protocol designed for secure IoD operations. Drawing on established 2FA principles and fuzzy extractor technology, Bio-2FA-IoD achieves strong mutual authentication between an operator (via an operator device), a drone (as a relay), and a ground control station (GCS), supported by a trusted authority. We detail the protocol’s registration and authentication phases, emphasizing reliable biometric key generation. A formal security analysis using BAN logic demonstrates secure belief establishment and key agreement, while a proof sketch under the Bellare–Pointcheval–Rogaway (BPR) model confirms its security against active adversaries in Authenticated Key Exchange (AKE) contexts. Furthermore, a comprehensive performance evaluation conducted using the Contiki OS and Cooja simulator illustrates Bio-2FA-IoD’s superior efficiency in computational and communication costs, alongside very low latency, high packet delivery rate, and minimal energy consumption. This positions it as a highly viable and lightweight solution for resource-constrained IoD environments. Additionally, this paper conceptually explores potential extensions to Bio-2FA-IoD, including the integration of Diffie–Hellman for enhanced perfect forward secrecy and a Sybil-free pseudonym management scheme for improved user anonymity and unlinkability. Full article
(This article belongs to the Special Issue Applied Cryptography and Information Security with Application)
Show Figures

Figure 1

12 pages, 2086 KiB  
Article
Factor Analysis of Semen Quality in Chicken and Its Impact on Fertility
by Yunlei Li, Yanyan Sun, Aixin Ni, Hailai Hagos Tesfay, Adamu Mani Isa, Yunhe Zong, Hui Ma, Jingwei Yuan and Jilan Chen
Animals 2025, 15(13), 1906; https://doi.org/10.3390/ani15131906 - 28 Jun 2025
Viewed by 392
Abstract
Evaluation of semen quality is crucial for predicting fertility success in artificial insemination and eventual rooster selection within poultry breeding programs. However, the multitude of parameters obtained in semen quality analysis makes it challenging for breeders to make informed selection decisions. This study [...] Read more.
Evaluation of semen quality is crucial for predicting fertility success in artificial insemination and eventual rooster selection within poultry breeding programs. However, the multitude of parameters obtained in semen quality analysis makes it challenging for breeders to make informed selection decisions. This study evaluated semen samples from 210 roosters in seven chicken breeds, using a computer-aided sperm analysis (CASA) system. A multivariate approach utilizing factor analysis (FA) was applied to simplify the data. The FA condensed 14 semen quality traits into 3 factors, linearity factor, velocity factor, and quantitative factor, explaining 75.82% of the original variations. The Beijing-You breed was selected to analyze the association between fertility and these semen quality factors, and we found high correlation between fertility and quantitative (r = 0.84) and linearity (r = 0.63) factors, and low correlation with the velocity factor (r = 0.19). Based on individual factor scores, breed clustering revealed distinct profiles with Houdan, Tibetan, and White Leghorn demonstrating lower sperm counts and poor linearity. Columbian Plymouth Rock exhibited high speed with poor linearity while Beijing-You, Rhode Island Red, and Barred Plymouth Rock displayed higher sperm counts with compromised speed and linearity. This study demonstrates that FA effectively consolidates multiple semen quality traits into fewer, biologically relevant factors. These findings provide valuable insights into breed-specific reproductive characteristics and offer actionable information for optimizing breeding in poultry production. Full article
(This article belongs to the Special Issue Livestock Fertility and Artificial Insemination)
Show Figures

Figure 1

12 pages, 1434 KiB  
Article
Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
by Young-Hyeon Lee, Min-Ho Yeo, Kyung-Soo Chang, Weon-Jong Yoon, Hye-Sook Kim, Jongwan Kim and Hye-Ran Kim
Appl. Sci. 2025, 15(13), 7238; https://doi.org/10.3390/app15137238 - 27 Jun 2025
Viewed by 309
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective [...] Read more.
Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH. Full article
Show Figures

Figure 1

13 pages, 3556 KiB  
Article
Lipidomic Profiling of Edible Japanese Sea Urchins by LC–MS
by Sahana Amai, Kisara Yuki, Siddabasave Gowda B. Gowda, Divyavani Gowda and Shu-Ping Hui
Foods 2025, 14(13), 2268; https://doi.org/10.3390/foods14132268 - 26 Jun 2025
Viewed by 714
Abstract
Sea urchins (Echinoidea) are marine echinoderms commonly consumed as seafood in East Asia. To date, various metabolic components of sea urchins have been analyzed, and their health benefits for humans have also been attracting attention. Lipids are the major biomolecules present [...] Read more.
Sea urchins (Echinoidea) are marine echinoderms commonly consumed as seafood in East Asia. To date, various metabolic components of sea urchins have been analyzed, and their health benefits for humans have also been attracting attention. Lipids are the major biomolecules present in sea urchins. However, the comprehensive lipid profiling of sea urchins is limited. In this study, we aimed to perform the comprehensive lipid profiling of six types of sea urchins using liquid chromatography–mass spectrometry (LC/MS). The application of untargeted lipidomics led to the identification of 281 lipid molecular species in six varieties of fresh sea urchin gonads. Each lipid metabolite was identified based on its retention time and MS/MS fragmentation pattern. The results of the analysis showed the highest abundance of lipid percentage in Kitamurasakiuni (14.3%), followed by Hokuyobafununi (12.4%). In all the analyzed sea urchins, glycerolipids such as triacylglycerols were found to be the most abundant lipid components. Multivariate analysis revealed that Murasakiuni showed a different lipid profile from the other types. Interestingly, the polyunsaturated fatty acid to saturated fatty acid ratios and health-related nutritional indices factors were found to be higher in Hokuyobafununi compared to other varieties. The ω-3 fatty acids, such as docosapentaenoic acid (FA 22:6) and eicosapentaenoic acid (FA 20:5), were also abundant in Hokuyobafununi. Lipids such as ether and N-acyl-type lysophosphatidylethanolamines were detected for the first time in sea urchins. This study highlights the nutritional significance of sea urchins and their potential use in the development of functional foods. Full article
Show Figures

Figure 1

18 pages, 5141 KiB  
Article
Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors
by Vu Thanh Doan, Chinh Cong Le, Hung Van Tien Le, Ngoc Anh Trieu, Phu Le Vo, Dang An Tran, Hai Van Nguyen, Toshinori Tabata and Thu Thi Hoai Vu
Sustainability 2025, 17(12), 5375; https://doi.org/10.3390/su17125375 - 11 Jun 2025
Viewed by 663
Abstract
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality [...] Read more.
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality in the Mekong Delta, applying Factor Analysis (FA), Principal Component Analysis (PCA), and Agglomerative Hierarchical Clustering (AHC) to a database of 3117 samples collected by national and provincial monitoring stations. The results revealed significant contamination with organic pollutants (BOD5: 3.50–172.870 mg/L, COD: 6.493–472.984 mg/L), pesticides (e.g., DDTs: n.d to 1.227 mg/L), trace metals (As: 0.006–0.046 mg/L, Cr: n.d–1.960 mg/L), and microbial indicators (Coliforms: n.d–45,100 MPN/100 mL), often higher than the WHO drinking water threshold. PCA/AHC analysis identified the following five major pollution components: (1) organic pollution and sewage/industrial and deposited chemicals (PCA1—23.08% variance); (2) pesticide and agricultural runoff derived contamination with Hg (PCA2—15.44%); (3) microbial pollution of the water was found to correlate positively with Zn and Cu content (PCA3—8.90%); (4) salinity was found to mobilize As and Cr (PCA4—8.00%); (5) nutrient/microbial pollution presumably from agricultural and sewage inputs (PCA5—7.22%). AHC showed some spatial variability that grouped samples in urban/industrial (Cluster 1), rural/agricultural (Cluster 2), and a highly contaminated one, where water was toxic and presented with microbial and Cd contamination (Cluster 3). Levels of pesticides, Cr, and microbial pollution were higher than reported in previous Mekong Delta studies and exceeded regional trends. These results emphasize the importance of holistic water management strategies, including better wastewater treatment, pesticide control, sustainable farming, and climate-adaptive measures to reduce saltwater intrusion and safeguard drinking water quality for the Mekong Delta. Full article
Show Figures

Figure 1

23 pages, 2163 KiB  
Article
The Characteristics and Source Contribution Analysis of Nutrients in Water Bodies of Small Watersheds in the Pearl River Delta
by Yi Wang, Qian Xiao, Bin He and Bam Haja Nirina Razafindrabe
Water 2025, 17(12), 1739; https://doi.org/10.3390/w17121739 - 9 Jun 2025
Cited by 1 | Viewed by 415
Abstract
With the rapid development of urbanization in rural areas of China, various environmental issues have become increasingly prominent, particularly the water pollution problems in small rural watersheds, which have garnered considerable attention. Comprehensive management of small watersheds requires an initial analysis of the [...] Read more.
With the rapid development of urbanization in rural areas of China, various environmental issues have become increasingly prominent, particularly the water pollution problems in small rural watersheds, which have garnered considerable attention. Comprehensive management of small watersheds requires an initial analysis of the sources and characteristics of water pollution. This study focuses on small rural watersheds in the Pearl River Delta. Based on the characteristics of the watersheds, 35 water quality monitoring stations were set up to collect water quality data. Cluster analysis was used to study the spatial distribution characteristics of water quality indicators at each monitoring point. Further, factor analysis methods (PCA/FA) and Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) models were employed to identify water quality influencing factors and quantify pollution source contributions. Finally, the comprehensive index method for eutrophication assessment was used to evaluate and analyze the potential eutrophication pollution risk in the watersheds. The results indicate significant pollution in the water quality of rural small watersheds in the study area, with varying degrees of pollution over time and space. During the wet season, water quality is mainly influenced by agricultural nutrients, followed by biochemical factors. In the normal and dry seasons, water quality is primarily affected by oxygen-consuming organic pollutants, followed by eutrophication factors. The comprehensive eutrophication evaluation shows that the overall water quality in the watershed is better during the wet season, with a lower risk of eutrophication; during the normal season, the overall water quality is poorer, with the highest eutrophication risk in the midstream; during the dry season, the upstream and midstream water quality is better, while the downstream water quality is poorer. In contrast, the pond water exhibits a higher risk of eutrophication during the wet season compared to the normal and dry seasons. This is mainly due to the peak of fish farming during the wet season, which results in a heavier load on the water body. This study provides effective data support for the water environment management of rapidly developing rural small watersheds. Full article
(This article belongs to the Special Issue Climate Modeling and Impacts of Climate Change on Hydrological Cycle)
Show Figures

Figure 1

18 pages, 2994 KiB  
Article
Altered Expression of Cell Cycle Regulators and Factors Released by Aged Cells in Skeletal Muscle of Patients with Bone Fragility: A Pilot Study on the Potential Role of SIRT1 in Muscle Atrophy
by Angela Falvino, Roberto Bonanni, Beatrice Gasperini, Ida Cariati, Angela Chiavoghilefu, Amarildo Smakaj, Virginia Veronica Visconti, Annalisa Botta, Riccardo Iundusi, Elena Gasbarra, Virginia Tancredi and Umberto Tarantino
Biomedicines 2025, 13(6), 1350; https://doi.org/10.3390/biomedicines13061350 - 31 May 2025
Viewed by 884
Abstract
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at [...] Read more.
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at the tissue level remains limited. Our pilot study aimed to characterize the expression profile of cell cycle regulators, factors released by aged cells, and sirtuin 1 (SIRT1) in the muscle tissue of 26 elderly patients undergoing hip arthroplasty, including 13 with low-energy fracture and 13 with osteoarthritis (OA). Methods: The mRNA expression levels of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin-dependent kinase inhibitor 2A (CDKN2A), p53, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-15 (IL-15), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3), growth differentiation factor 15 (GDF15), and SIRT1 were evaluated in muscle tissue by qRT-PCR. In addition, immunohistochemistry and Western blotting analysis were conducted to measure the protein levels of SIRT1. Results: A marked muscle atrophy was observed in fractured patients compared to the OA group, in association with an up-regulation of cell cycle regulators and factors released by the aged cells. The expression of matrix metallopeptidase 3 (MMP3), plasminogen activator inhibitor 1 (PAI-1), and fas cell surface death receptor (FAS) was also investigated, although no significant differences were observed between the two experimental groups. Notably, SIRT1 expression was significantly higher in OA patients, confirming its role in maintaining muscle health during aging. Conclusions: Further studies will be needed to clarify the role of SIRT1 in the senescence characteristic of age-related musculoskeletal disorders, counteracting the muscle atrophy that predisposes to fragility fractures. Full article
Show Figures

Figure 1

13 pages, 4529 KiB  
Article
Variation in Intramuscular Fat Deposition of Goats and Sheep and Its Correlation with Gut Microbiota
by Lei Yang, Shaobin Li, Jiagong Hou, Zhisheng Tang, Bingang Shi, Yuzhu Luo, Jiqing Wang and Fangfang Zhao
Foods 2025, 14(11), 1885; https://doi.org/10.3390/foods14111885 - 26 May 2025
Viewed by 585
Abstract
The meat quality of sheep and goats differs even within the same age, gender, and farming systems. Intramuscular fat (IMF) content is an important factor affecting the quality of livestock meat because it affects muscle color, tenderness, juiciness, water-holding capacity, and flavor. This [...] Read more.
The meat quality of sheep and goats differs even within the same age, gender, and farming systems. Intramuscular fat (IMF) content is an important factor affecting the quality of livestock meat because it affects muscle color, tenderness, juiciness, water-holding capacity, and flavor. This study evaluates the differences in IMF deposition characteristics between Longdong cashmere goats and Tan sheep, and also explores the correlations between these variations and the gut microbiota. The results revealed that the IMF contents in shoulder and rump meat, as well as the blood lipid levels, of Longdong cashmere goats were higher than those of Tan sheep (p < 0.05). The content of fatty acid synthase (FAS) in the duodenum of the goats was lower, but the content of hormone-sensitive lipase (HSL) in both the pancreas and duodenum was greater (p < 0.05). The Chao1 and β diversity showed differences between the two breeds, observed not only in the abomasum but also in the colon. The specific microbiota identified from the goats were involved in the lipid metabolism pathway. The concentrations of acetic acid and propionic acid in the colonic and abomasal chyme were decreased in the goats when compared to the sheep (p < 0.05). The contents of FAS in the colonic chyme of the goats were significantly lower, while HSL in the abomasal chyme was significantly higher than that of the sheep. The correlation analysis of IMF deposition with gut microbiota showed that Acetobacter and UBA1711 in the abomasum, as well as Faecousia, WQUU01, UBA5905, and GCA-900066495 in the colon, were positively correlated with the IMF content in shoulder meat and the level of LDL (except for UBA1711), but negatively associated with the content of propionic acid (|r| > 0.45, p < 0.05). This preliminary study has demonstrated that some specific bacteria in the abomasum and colon were associated with IMF deposition, while also providing an indicative reference range for further investigation into the effects of microbes on IMF deposition. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

23 pages, 16870 KiB  
Article
Analysis of the Dynamic Active Earth Pressure from c-φ Backfill Considering the Amplification Effect of Seismic Acceleration
by Zhiliang Sun, Wei Wang and Hanghang Liu
Appl. Sci. 2025, 15(11), 5966; https://doi.org/10.3390/app15115966 - 26 May 2025
Viewed by 360
Abstract
This study extends the method of pseudo-dynamic analysis based on the Mononobe-Okabe (M-O) method by comprehensively incorporating the seismic acceleration response characteristics of backfill soil and the cohesive properties of the fill. The proposed method is adapted for backfill soils by incorporating the [...] Read more.
This study extends the method of pseudo-dynamic analysis based on the Mononobe-Okabe (M-O) method by comprehensively incorporating the seismic acceleration response characteristics of backfill soil and the cohesive properties of the fill. The proposed method is adapted for backfill soils by incorporating the cohesion c and internal friction angle φ (including scenarios with non-horizontal backfill surfaces). Theoretical formulas for the active earth pressure coefficient and its distribution on rigid retaining walls under the most unfavorable conditions are derived. The rationality of the proposed formulas is preliminarily verified using model test data from the relevant literature. A detailed parametric sensitivity analysis reveals the following trends: The active earth pressure coefficient Ka increases with increases in the amplification factor fa, wall backface inclination angle θ, backfill slope inclination i, lateral vibration period T, and horizontal seismic acceleration coefficient kh; Ka decreases with an increasing internal friction angle φ and cohesion/unit weight ratio c/γH. The failure wedge angle αa increases with increases in φ, θ, and c/γH, decreases with increases in fa, the soil–wall friction angle δ, i, T, kh, and the vertical seismic acceleration coefficient kv. Calculations are carried out to further identify the critical tensile stress depth in cohesive backfill soils using c and φ. The proposed analysis highlights the necessity of considering the seismic acceleration amplification factor fa, backfill cohesion c, and soil–wall adhesion cw in active earth pressure calculations. This study recommends that the seismic design of retaining walls should involve appropriate evaluation of the the actual cohesion of backfill materials and fully account for the acceleration amplification effects under seismic loading. Full article
Show Figures

Figure 1

22 pages, 11588 KiB  
Article
Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design
by Chuanlin Wang, Shupeng Zhou, Qingyou Ou, Junkai Liu and Ming Wu
Materials 2025, 18(11), 2428; https://doi.org/10.3390/ma18112428 - 22 May 2025
Cited by 1 | Viewed by 346
Abstract
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate [...] Read more.
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate that FA effectively enhances the fluidity of fresh SAC paste while mitigating drying shrinkage. Under standard curing conditions, the compressive strength of SAC mortar decreases with increasing FA content, reaching optimal performance at a 5% replacement level. However, in seawater immersion environments, FA undergoes chemical activation induced by seawater ions, leading to a positive correlation between mortar strength and FA content, with the 10% replacement ratio demonstrating maximum efficacy. SF addition reduces workability but significantly suppresses shrinkage deformation. While exhibiting detrimental effects on flexural strength under standard curing (optimal dosage: 7.5%), a 5.0% SF content manifests superior seawater resistance in marine environments. SP incorporation minimally impacts mortar rheology but exacerbates shrinkage behavior, showing limited improvement in both standard-cured compressive strength and seawater corrosion resistance. Orthogonal experimental analysis reveals that SF exerts the most pronounced influence on SAC mortar fluidity. Both standard curing and seawater immersion conditions indicate FA as the dominant factor affecting mechanical strength parameters. The optimal composite formulation, determined through orthogonal combination testing, achieves peak compressive strength with 5% FA, 5% SF, and 5% SP synergistic incorporation. Full article
Show Figures

Figure 1

15 pages, 2648 KiB  
Article
Fatty Acid Metabolism Regulators Have Pivotal Roles in the Pathogenesis of Ovarian Carcinoma
by Megumi Watanabe, Motoki Matsuura, Tatsuya Sato, Makoto Usami, Tsuyoshi Saito, Masato Furuhashi, Kohichi Takada and Hiroshi Ohguro
Int. J. Mol. Sci. 2025, 26(10), 4794; https://doi.org/10.3390/ijms26104794 - 16 May 2025
Viewed by 559
Abstract
To study the pathological contribution of fatty acid (FA) metabolism regulators including fatty acid binding protein 4 (FABP4), FABP5, peroxisome proliferator-activated receptor alpha (PPARα), and PPARγ in ovarian carcinoma, non-cancerous human ovarian surface epithelium (HOSE) cells and two epithelial ovarian carcinoma (EOC) cell [...] Read more.
To study the pathological contribution of fatty acid (FA) metabolism regulators including fatty acid binding protein 4 (FABP4), FABP5, peroxisome proliferator-activated receptor alpha (PPARα), and PPARγ in ovarian carcinoma, non-cancerous human ovarian surface epithelium (HOSE) cells and two epithelial ovarian carcinoma (EOC) cell lines, AMOC-2 and ES2 established from ovarian serous adenocarcinoma and ovarian clear cell carcinoma, respectively, were subjected to (1) an analysis of the physical properties of spheroids, (2) qPCR analysis, (3) cellular metabolic analysis, and (4) multiomic pan-cancer analysis using the Cancer Genome Atlas (TCGA). In contrast to globe-shaped spheroids of HOSE cells, AMOC-2 and ES2 cells formed non-globe-shaped spheroids and ES2 spheroids were much more fragile than AMOC-2 spheroids. Gene expression levels of FABP4 and FABP5 in AMOC-2 cells and those of PPARγ in AMOC-2 cells were significantly higher than those in HOSE cells. Metabolic phenotypes and the effectiveness against antagonists for regulators were significantly different in the two types of cancerous cells. Those regulators were identified by a multiomic pan-cancer analysis as novel factors for the prediction of the prognosis of ovarian serous adenocarcinoma. The results show that dysregulated FA metabolism in AMOC-2 and ES2 suggests that the regulation of FA metabolism may be a critical factor in the pathogenesis of EOC. Full article
Show Figures

Figure 1

Back to TopTop