Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (198)

Search Parameters:
Keywords = extensible blade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4242 KB  
Review
Advancements and Challenges in Coatings for Wind Turbine Blade Raindrop Erosion: A Comprehensive Review of Mechanisms, Materials and Testing
by Nur Ain Wahidah A. Yusof, Talal F. Algaddaime and Margaret M. Stack
Sustainability 2025, 17(21), 9611; https://doi.org/10.3390/su17219611 - 29 Oct 2025
Viewed by 166
Abstract
Raindrop erosion of wind turbine blades’ leading edge is a critical degradation mechanism limiting wind turbine blade lifetime and aerodynamic efficiency. Protective coatings have been extensively studied to mitigate this damage. This review critically synthesises current knowledge on coating-based protection strategies against erosion, [...] Read more.
Raindrop erosion of wind turbine blades’ leading edge is a critical degradation mechanism limiting wind turbine blade lifetime and aerodynamic efficiency. Protective coatings have been extensively studied to mitigate this damage. This review critically synthesises current knowledge on coating-based protection strategies against erosion, with emphasis on (i) the underlying mechanisms of erosion, (ii) advances in conventional and emerging coating technologies, and (iii) experimental approaches for testing and lifetime prediction. Across reported studies, nanofiller reinforcement (e.g., CNTs, graphene, CeO2, Al2O3) enhances erosion resistance by 60–99%, primarily through improved toughness and stress-wave dissipation. Hybrid and multifunctional systems further combine mechanical durability with self-healing or anti-icing capabilities. Experimental results confirm that erosion rate follows a power-law dependence on impact velocity, with maximum damage occurring between 45° and 60° impact angles. Softer elastomeric coatings demonstrate longer incubation periods and superior viscoelastic recovery compared with rigid sol–gel systems. Persistent gaps include the lack of standardised testing, poor field–lab correlation, and limited long-term durability data. Future work should focus on coordinating multi-stressor testing with variable-frequency rain setups to replicate real field conditions and enable reliable lifetime prediction of next-generation erosion-resistant coatings. Full article
Show Figures

Figure 1

21 pages, 3933 KB  
Article
Mechanical Design and Experimental Study of a Small-Scale Wind Turbine Model
by Eduardo Muñoz-Palomeque, Segundo Esteban and Matilde Santos
Machines 2025, 13(10), 929; https://doi.org/10.3390/machines13100929 - 8 Oct 2025
Viewed by 678
Abstract
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address [...] Read more.
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address this shortcoming, this article presents the design of a low-cost, modular 3D-printed small prototype of a wind turbine. It includes a multi-hollow platform for marine environments configuration and stabilization, the turbine tower, and three blades with active pitch control, not always included in wind turbine prototypes. The modular tower design allows for easy height extensions, while the rotor incorporates custom blades optimized for the prototype geometry and experimental setup. Tests were conducted to evaluate the system’s operational response and verify the proper functioning of the assembled components at various wind speeds and blade pitch angles. The results confirm that the rotor speed with the prototype’s onshore configuration is highly pitch-dependent, reaching a maximum efficiency of approximately 5°. The tower displacement, measured with an IMU, remained within a narrow range, oscillating around 2° and reaching up to 4° at higher wind speeds due to elastic deflections of the PLA structure. These results, consistent with the prototype scale, validate its usefulness in capturing essential aerodynamic and structural behaviors of the wind turbine. They also demonstrate its relevance as a new tool for experimental studies of wind turbines and open up new research, validation, and control possibilities not considered in previous developments by incorporating blade pitch control. Full article
Show Figures

Figure 1

21 pages, 1424 KB  
Article
Improving Combined Cycle Performance with Pressure Gain Combustion in the Gas Turbine
by Antonio Giuffrida and Paolo Chiesa
Processes 2025, 13(10), 3181; https://doi.org/10.3390/pr13103181 - 7 Oct 2025
Viewed by 747
Abstract
Pressure Gain Combustion (PGC) is an interesting emerging concept to enhance the performance of gas turbines currently based on the Brayton–Joule cycle. Focusing on a F-class gas turbine for land-based power generation, the current work investigates PGC potential in both simple and combined [...] Read more.
Pressure Gain Combustion (PGC) is an interesting emerging concept to enhance the performance of gas turbines currently based on the Brayton–Joule cycle. Focusing on a F-class gas turbine for land-based power generation, the current work investigates PGC potential in both simple and combined cycle operations by means of an in-house simulation software. The PGC cycle lay-out specifically includes a booster compressor for delivering cooling air to the blades at the first stage of the gas turbine expander. The effects of different amounts of air from the same booster to the PGC system for cooling requirements are also analyzed. Considering reasonable PGC values based on literature data, the efficiency of the gas turbine simple cycle rises by 2.85–3.40 percentage points in the case of no combustor cooling, or 1.85–2.25 percentage points for the most extensive cooling at the combustor, compared to the reference case. The combined cycle efficiency increases too, despite the almost equal power generation at the bottoming steam cycle. Ultimately, a revised parametric analysis with reduced efficiency at the first stage of the gas turbine expander is carried out as well to account for the losses induced by the PGC on the fluid dynamics of the expansion. In this new scenario, the risk of nullifying the advantages related to PGC is real, because of specific combinations of lower expansion efficiency at the gas turbine expander and extensive cooling at the combustor. Thus, better turbine design and effective thermal management at the combustor are fundamental to achieve the highest efficiency. Full article
(This article belongs to the Special Issue Fluid Dynamics and Thermodynamic Studies in Gas Turbine)
Show Figures

Figure 1

24 pages, 4357 KB  
Article
Experimental and Numerical Investigation of Suction-Side Fences for Turbine NGVs
by Virginia Bologna, Daniele Petronio, Francesca Satta, Luca De Vincentiis, Matteo Giovannini, Gabriele Cattoli, Monica Gily and Andrea Notaristefano
Int. J. Turbomach. Propuls. Power 2025, 10(4), 31; https://doi.org/10.3390/ijtpp10040031 - 1 Oct 2025
Viewed by 306
Abstract
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which [...] Read more.
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which are typical features of some LPT first stages directly downstream of an HPT, hence presenting high channel diffusion, especially near the tip. In particular, the present study complements existing literature by highlighting how blade fences positioned on the suction side can reduce the penetration of the large passage vortex. This is particularly effective in applications where flow turning is limited, the blades are lightly loaded at the front, and the horseshoe vortex is weak. The benefits of the present fence design in terms of losses and flow uniformity at the cascade exit plane have been demonstrated by means of a detailed experimental campaign carried out on a large-scale linear cascade in the low-speed wind tunnel installed in the Aerodynamics and Turbomachinery Laboratory of the University of Genova. Measurements mainly focused on the characterization of the flow field upstream and downstream of straight and fenced vane cascades using a five-hole pressure probe, to evaluate the impact of the device in reducing secondary flows. Furthermore, experiments were also adopted to validate both low-fidelity (RANS) and high-fidelity (LES) simulations and revealed the capability of both simulation approaches to accurately predict losses and flow deviation. Moreover, the accuracy in high-fidelity simulations has enabled an in-depth investigation of how fences act mitigating the effects of the passage vortex along the blade channel. By comparing the flow fields of the configurations with and without fences, it is possible to highlight the mitigation of secondary flows within the channel. Full article
Show Figures

Figure 1

29 pages, 618 KB  
Review
End-of-Life Strategies for Wind Turbines: Blade Recycling, Second-Life Applications, and Circular Economy Integration
by Natalia Cieślewicz, Krzysztof Pilarski and Agnieszka A. Pilarska
Energies 2025, 18(19), 5182; https://doi.org/10.3390/en18195182 - 29 Sep 2025
Viewed by 1385
Abstract
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset [...] Read more.
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset polymer composites reinforced with glass or carbon fibres, are particularly problematic due to their low recyclability and complex material structure. The aim of this article is to provide a system-level review of current end-of-life strategies for wind turbine components, with particular emphasis on blade recycling and decision-oriented comparison, and its integration into circular economy frameworks. The paper explores three main pathways: operational life extension through predictive maintenance and design optimisation; upcycling and second-life applications; and advanced recycling techniques, including mechanical, thermal, and chemical methods, and reports qualitative/quantitative indicators together with an indicative Technology Readiness Level (TRL). Recent innovations, such as solvolysis, microwave-assisted pyrolysis, and supercritical fluid treatment, offer promising recovery rates but face technological and economic as well as environmental compliance limitations. In parallel, the review considers deployment maturity and economics, including an indicative mapping of cost and deployment status to support decision-making. Simultaneously, reuse applications in the construction and infrastructure sectors—such as concrete additives or repurposed structural elements—demonstrate viable low-energy alternatives to full material recovery, although regulatory barriers remain. The study also highlights the importance of systemic approaches, including Extended Producer Responsibility (EPR), Digital Product Passports and EU-aligned policy/finance instruments, and cross-sectoral collaboration. These instruments are essential for enhancing material traceability and fostering industrial symbiosis. In conclusion, there is no universal solution for wind turbine blade recycling. Effective integration of circular principles will require tailored strategies, interdisciplinary research, and bankable policy support. Addressing these challenges is crucial for minimising the environmental footprint of the wind energy sector. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

27 pages, 11073 KB  
Article
An Efficient and High-Precision Nonlinear Co-Rotational Beam Method for Wind Turbine Blades Considering Tapering Effects and Anisotropy
by Zizhen Zhao, Long Wang, Xilai Li and Tongguang Wang
Energies 2025, 18(18), 4907; https://doi.org/10.3390/en18184907 - 15 Sep 2025
Viewed by 542
Abstract
The size and flexibility of offshore turbine blades manufactured from composite materials have continuously increased in recent years. In this context, accurate and efficient aeroelastic analyses are important for designing and safely assessing long, flexible blades. Existing linear beam models need to be [...] Read more.
The size and flexibility of offshore turbine blades manufactured from composite materials have continuously increased in recent years. In this context, accurate and efficient aeroelastic analyses are important for designing and safely assessing long, flexible blades. Existing linear beam models need to be revised to offer accurate estimates of the geometric nonlinear effects triggered by large displacements. Nonlinear, geometrically exact beam models that have already been extensively used for the above purpose are generally difficult to converge and inefficient. We propose a novel co-rotational beam model for the nonlinear analysis of wind turbine blades. The method adopts vector complement to resolve rotation vector singularity problems. A complete anisotropic cross-sectional stiffness matrix and Timoshenko beam elements are introduced to capture full coupling effects. The method also considers the anisotropy and taper effects caused by the non-uniformity of chord length and material distributions. We established the nonlinear aeroelastic model of the DTU 10 MW turbine, and the results showed that the taper effect dramatically reduced the blade torsion angle by up to 31.44% under rated wind speed. Meanwhile, static beam experiments demonstrate that the accuracy error of the current method is only 1.78%, which is significantly lower than the 17.8% error of the conventional finite element beam method. Full article
Show Figures

Figure 1

26 pages, 1382 KB  
Review
Prosthetic Devices for Adaptative Sport in Pediatrics: A Narrative Review
by Clàudia Bigas Vila, Giulia Stella, Federica Pauciulo, Marco Tofani, Caterina Delia, Loredana Canzano, Paola Luttazi, Cecilia Cerretani and Gessica Della Bella
Appl. Sci. 2025, 15(17), 9652; https://doi.org/10.3390/app15179652 - 2 Sep 2025
Viewed by 1118
Abstract
(1) Background: Pediatric activity-specific prosthetic adaptations—such as running blades or cycling attachments—enable children’s participation in recreational activities, otherwise limited with daily use prostheses (DUPs). However, there is little information regarding their design, manufacturing process, and biomechanical performance. This review addresses this gap by [...] Read more.
(1) Background: Pediatric activity-specific prosthetic adaptations—such as running blades or cycling attachments—enable children’s participation in recreational activities, otherwise limited with daily use prostheses (DUPs). However, there is little information regarding their design, manufacturing process, and biomechanical performance. This review addresses this gap by systematically analyzing the current literature on upper and lower limb amputations, and offers a novel synthesis to inform future research. (2) Methods: A review of the literature published in English between 2005 and 2025 was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. We included studies focusing on amputation, prosthetics, and 3D printing. (3) Results: Running and cycling prostheses are among the most extensively studied in recent years. Comfort is reported as a key aspect for achieving an optimal outcome, and innovations in sockets align with biomechanical principles of amputation. However, high costs remain a significant barrier. (4) Conclusions: Advancements in design, material choices, and techniques, such as 3D printing (3DP), have been central to the development of novel activity-specific prostheses for children. However, the current literature focuses mainly on track sports and cycling. This, as well as the lack of accessible key information behind the development of these devices, showcases the present gap between the pediatric and adult research fields. Full article
(This article belongs to the Special Issue Assistive Technology for Rehabilitation)
Show Figures

Figure 1

32 pages, 11740 KB  
Article
Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades
by Julita Krassowska
Materials 2025, 18(17), 4105; https://doi.org/10.3390/ma18174105 - 1 Sep 2025
Viewed by 883
Abstract
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), [...] Read more.
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), and cement type (CEM I 42.5, CEM II 42.5R/A-V). The mechanical properties of the fiber-reinforced concretes, including compressive strength, flexural strength, splitting tensile strength, and modulus of elasticity, were evaluated. The addition of recycled carbon fibers significantly improved flexural and splitting tensile strengths, with increases exceeding 60% and 100%, respectively, at the highest fiber dosage (8 kg/m3), attributed to efficient crack-bridging capability. Compressive strength was mainly influenced by the water-to-cement ratio, while the modulus of elasticity showed slight reductions in some mixes due to fiber clustering and increased micro-porosity. Regression analysis indicated that shorter fibers (25 mm) were more effective in enhancing flexural strength, whereas longer fibers (50 mm) improved splitting tensile strength. Classical predictive models generally underestimated the flexural capacity of recycled-carbon-fiber-reinforced concretes, highlighting the need for recalibration. Optical microscopy confirmed uniform fiber dispersion at lower dosages and a dominant pull-out failure mechanism. The findings demonstrate the feasibility of using recycled carbon fibers to enhance the mechanical performance of concrete while supporting sustainability through waste diversion and circular economy strategies. Full article
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 830
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

19 pages, 15866 KB  
Article
Layout and Rotation Effect on Aerodynamic Performance of Multi-Rotor Ducted Propellers
by Zeyu Li, Jianghao Wu, Pengyu Zhang, Lin Wang, Long Chen, Zhengping Zou and Haiying Lin
Drones 2025, 9(8), 561; https://doi.org/10.3390/drones9080561 - 11 Aug 2025
Viewed by 1145
Abstract
Multi-rotor ducted propellers, which integrate the high-efficiency characteristics of ducted propellers with the layout flexibility and safety advantages of distributed propulsion, are extensively utilized in the propulsion systems of low-altitude transport systems and large-scale unmanned aerial vehicles. This study numerically investigates the effects [...] Read more.
Multi-rotor ducted propellers, which integrate the high-efficiency characteristics of ducted propellers with the layout flexibility and safety advantages of distributed propulsion, are extensively utilized in the propulsion systems of low-altitude transport systems and large-scale unmanned aerial vehicles. This study numerically investigates the effects of spanwise distance, streamwise distance, rotational consistency, and rotational phase gap on the unsteady aerodynamic characteristics of multi-rotor ducted propellers under hovering conditions. A parameterized numerical computation model and an Aligned Rank Transform Analysis of Variance (ART-ANOVA) method suitable for small datasets exhibiting regular patterns were developed. Initially, numerical simulations investigated the aerodynamic performance of multi-rotor ducted propeller models with varying layout parameters. The aerodynamic coefficients of the propellers monotonically decrease as the layout spacing increases; however, the change trends differ. Aerodynamic interference reduces the airflow velocity and influences the distribution of high-pressure zones, consequently impacting thrust and efficiency. Subsequently, this paper examined the coupled effects of two rotational characteristics. The relationship between propeller aerodynamic performance and rotational phase gap exhibits distinct trigonometric function characteristics. The presence of the duct mitigates the mutual interference between blades, thereby altering the amplitude and phase of these characteristics. Finally, an ART-ANOVA method was employed to quantify the main and interaction effects, revealing that rotational consistency has a dominant influence on all aspects of aerodynamic performance. Insights into aerodynamic performance are crucial for advancing low-altitude transport systems that utilize ducted propeller propulsion systems. Full article
Show Figures

Graphical abstract

22 pages, 18501 KB  
Article
ECL5/CATANA: Transition from Non-Synchronous Vibration to Rotating Stall at Transonic Speed
by Alexandra P. Schneider, Anne-Lise Fiquet, Nathalie Grosjean, Benoit Paoletti, Xavier Ottavy and Christoph Brandstetter
Int. J. Turbomach. Propuls. Power 2025, 10(3), 22; https://doi.org/10.3390/ijtpp10030022 - 7 Aug 2025
Cited by 1 | Viewed by 593
Abstract
Non-synchronous vibration (NSV), flutter, or rotating stall can cause severe blade vibrations and limit the operating range of compressors and fans. To enhance the understanding of these phenomena, this study investigated the corresponding mechanisms in modern composite ultra-high-bypass-ratio (UHBR) fans based on the [...] Read more.
Non-synchronous vibration (NSV), flutter, or rotating stall can cause severe blade vibrations and limit the operating range of compressors and fans. To enhance the understanding of these phenomena, this study investigated the corresponding mechanisms in modern composite ultra-high-bypass-ratio (UHBR) fans based on the ECL5/CATANA test campaign. Extensive steady and unsteady instrumentation such as stereo-PIV, fast-response pressure probes, and rotor strain gauges were used to derive the aerodynamic and structural characteristics of the rotor at throttled operating conditions. The study focused on the analysis of the transition region from transonic to subsonic speeds where two distinct phenomena were observed. At transonic design speed, rotating stall was encountered, while NSV was observed at 90% speed. At the intermediate 95% speedline, a peculiar behavior involving a single stalled blade was observed. The results emphasize that rotating stall and NSV exhibit different wave characteristics: rotating stall comprises lower wave numbers and higher propagation speeds at around 78% rotor speed, while small-scale disturbances propagate at 57% rotor speed and lock-in with blade eigenmodes, causing NSV. Both phenomena were observed in a narrow range of operation and even simultaneously at specific conditions. The presented results contribute to the understanding of different types of operating range-limiting phenomena in modern UHBR fans and serve as a basis for the validation of numerical simulations. Full article
Show Figures

Figure 1

22 pages, 7942 KB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 379
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

17 pages, 4357 KB  
Article
Rotational Bending Fatigue Crack Initiation and Early Extension Behavior of Runner Blade Steels in Air and Water Environments
by Bing Xue, Yongbo Li, Wanshuang Yi, Wen Li and Jiangfeng Dong
Metals 2025, 15(7), 783; https://doi.org/10.3390/met15070783 - 11 Jul 2025
Viewed by 574
Abstract
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter [...] Read more.
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter model was identified as the most accurate descriptor of fatigue life data in both environments. Key findings reveal that, in air, cracks predominantly propagate along the densest crystallographic planes, whereas, in water, corrosive media significantly accelerate crack initiation and propagation, reducing fatigue resistance, creating more tortuous crack paths, and inducing microvoids and secondary cracks at the crack tip. These corrosive effects adversely alter the material’s microstructure, profoundly impacting fatigue life and crack propagation rates. The insights gained from this research are crucial for understanding the performance of super martensitic stainless steel in aqueous environments, offering a reliable basis for its engineering applications and contributing to the development of more effective design and maintenance strategies. Full article
(This article belongs to the Special Issue Microstructure, Deformation and Fatigue Behavior in Metals and Alloys)
Show Figures

Figure 1

26 pages, 20735 KB  
Article
The Study of the Effect of Blade Sharpening Conditions on the Lifetime of Planar Knives During Industrial Flatfish Skinning Operations
by Paweł Sutowski, Bartosz Zieliński and Krzysztof Nadolny
Materials 2025, 18(13), 3191; https://doi.org/10.3390/ma18133191 - 6 Jul 2025
Viewed by 726
Abstract
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line [...] Read more.
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line downtime due to tool replacement. Meeting these demands is particularly challenging in cutting operations involving heterogeneous materials, especially when the processed raw material contains inclusions and impurities significantly harder than the material itself. This situation occurs, among others, during flatfish skinning operations analyzed in this paper, a common process in the fish processing industry. These fish, due to their natural living environment and behavior, contain a significant proportion of hard inclusions and impurities (shell fragments, sand grains) embedded in their skin. Contact between the tool and hard inclusions causes deformation, wrapping, crushing, and even chipping of the cutting edge of planar knives, resulting in non-uniform blade wear, which manifests as areas of uncut skin on the fish fillet. This necessitates frequent tool changes, resulting in higher tooling costs and longer operating times. This study provides a unique opportunity to review the results of in-service pre-implementation tests of planar knives in the skinning operation conducted under industrial conditions. The main objective was to verify positive laboratory research results regarding the extension of technical blade tool life through optimization of sharpening conditions during grinding. Durability test results are presented for the skinning process of fillets from plaice (Pleuronectes platessa) and flounder (Platichthys flesus). The study also examined the effect of varying cooling and lubrication conditions in the grinding zone on the tool life of technical planar blades. Sharpening knives under flood cooling conditions and using the hybrid method (combining minimum quantity lubrication and cold compressed air) increased their service life in the plaice skinning process (Pleuronectes platessa) by 12.39% and 8.85%, respectively. The increase in effective working time of knives during flounder (Platichthys flesus) skinning was even greater, reaching 17.7% and 16.3% for the flood cooling and hybrid methods, respectively. Full article
Show Figures

Figure 1

24 pages, 10609 KB  
Article
Computational Fluid Dynamics Analysis of Draft Tube Flow Characteristics in a Kaplan Turbine
by Qinwen Yan, Zhiqiang Xiong, Yuan Zheng, Chen Feng, Zhen Li, Lin Hu and Lianchen Xu
Actuators 2025, 14(6), 298; https://doi.org/10.3390/act14060298 - 18 Jun 2025
Viewed by 616
Abstract
This study presents a numerical investigation of the internal flow characteristics within the draft tube of a Kaplan turbine using computational fluid dynamics (CFD). The distribution and evolution of vortical structures, particularly the formation and development of vortex ropes under various operating conditions, [...] Read more.
This study presents a numerical investigation of the internal flow characteristics within the draft tube of a Kaplan turbine using computational fluid dynamics (CFD). The distribution and evolution of vortical structures, particularly the formation and development of vortex ropes under various operating conditions, are systematically analyzed. The study aims to explore the effects of blade angle and guide vane opening on the internal flow characteristics of the unit, thereby providing guidance for flow control strategies. The influence of guide vane opening and turbine head on vortex dynamics and flow stability is examined, with a focus on the pressure pulsations induced by vortex ropes through frequency-domain analysis. The results indicate that increased guide vane openings and higher heads lead to the expansion and downstream extension of the vortex rope into the elbow section, causing significant low-frequency pressure pulsations and enhancing flow instability. These findings contribute to a deeper understanding of unsteady flow behavior in Kaplan turbine draft tubes and provide a theoretical foundation for improving hydraulic stability and optimizing operational performance. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

Back to TopTop