Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = extended partially insulated crack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9793 KiB  
Article
Specifics and Methods of Inhibiting the Underfilm Corrosion of Carbon Steel
by Maxim Petrunin, Tatyana Yurasova, Alevtina Rybkina and Liudmila Maksaeva
Polymers 2024, 16(6), 780; https://doi.org/10.3390/polym16060780 - 12 Mar 2024
Viewed by 1302
Abstract
The process of metal dissolution under a delaminated insulating polymer coating (underfilm dissolution) has been studied. For this purpose, we used an experimental setup that simulates the process of corrosion of underground metal structures in the presence of through defects in the polymer [...] Read more.
The process of metal dissolution under a delaminated insulating polymer coating (underfilm dissolution) has been studied. For this purpose, we used an experimental setup that simulates the process of corrosion of underground metal structures in the presence of through defects in the polymer coating and/or extended areas of peeling of the polymer coating from the metal (loss of adhesion)—subfilm cavities partially or completely filled with electrolyte. In particular, the distribution of the protective current under a peeled polymer coating was studied, and a sharp decrease in the value of the protective current was shown at a distance of 1–3 cm from the edge of the defect with a gap between the metal and the coating of 1–6 mm. The localized nature of metal corrosion under the exfoliated polymeric coating has been demonstrated. The ratio of the areas with accelerated corrosion to the total area of the metal can be 1 to 100. It has been established that there are areas of anodic dissolution of the metal during cathodic polarization of the entire sample with a peeled coating. The activating effect of carbon dioxide and hydrogen sulfide on the corrosion and anodic dissolution of steel under the coating was shown. So, it has been established that the dissolution current flowing from the anodic sections on a surface can increase approximately 10 times in the presence of carbon dioxide and hydrogen sulfide. A synergistic effect of these compounds on the process of localized underfilm corrosion of steel was detected. It has been developed a mechanism for the formation of localized corrosion damage to steel under a delaminated polymeric coating, which can be the nuclei of corrosion cracks upon reaching a certain level of mechanical loads, i.e., stress corrosion cracking (SCC) of carbon steel. Possible manners of inhibiting underfilm dissolution of metals are considered, and a method for pre-treatment of the surface with solutions of organosilanes, which ensures the formation of surface self-assembled polymeric siloxane nanolayers responsible for inhibiting underfilm corrosion of steel, is proposed. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

20 pages, 3011 KiB  
Article
Fracture Analysis for a Crack in Orthotropic Material Subjected to Combined 2i-Order Symmetrical Thermal Flux and 2j-Order Symmetrical Mechanical Loading
by Bing Wu, Daren Peng and Rhys Jones
Appl. Mech. 2021, 2(1), 127-146; https://doi.org/10.3390/applmech2010008 - 4 Mar 2021
Cited by 3 | Viewed by 2486
Abstract
The problems of crack formation in orthotropic materials under 2i order polynomial function heat flow and 2j order polynomial function mechanical loading are considered. An extended local insulation crack model is proposed, and fracture analysis is carried out for the above [...] Read more.
The problems of crack formation in orthotropic materials under 2i order polynomial function heat flow and 2j order polynomial function mechanical loading are considered. An extended local insulation crack model is proposed, and fracture analysis is carried out for the above problems. Utilizing Fourier transform technique (FTT) and principle of superposition, the jumps of temperature, elastic displacements on the crack, and so on are obtained. The advantage of this analysis is that the explicit closed form solutions of main parameters in classical fracture mechanics, i.e., the stress intensity factor, the energy release rate, and the energy density have been presented. A simple example is used to demonstrate the method proposed in this paper. The analysis results show that the non-dimensional thermal conductivity and the combined ratio of the heat flux per thickness perpendicular to the crack surface to the mechanical load have a great influence on the calculation of fracture parameters. Only when they meet certain conditions can the correct fracture parameter calculation results be obtained. Full article
Show Figures

Figure 1

16 pages, 2522 KiB  
Article
Radio-Frequency Localization of Multiple Partial Discharges Sources with Two Receivers
by Guillermo Robles, José Manuel Fresno and Juan Manuel Martínez-Tarifa
Sensors 2018, 18(5), 1410; https://doi.org/10.3390/s18051410 - 3 May 2018
Cited by 6 | Viewed by 4340
Abstract
Spatial localization of emitting sources is especially interesting in different fields of application. The focus of an earthquake, the determination of cracks in solid structures, or the position of bones inside a body are some examples of the use of multilateration techniques applied [...] Read more.
Spatial localization of emitting sources is especially interesting in different fields of application. The focus of an earthquake, the determination of cracks in solid structures, or the position of bones inside a body are some examples of the use of multilateration techniques applied to acoustic and vibratory signals. Radar, GPS and wireless sensors networks location are based on radiofrequency emissions and the techniques are the same as in the case of acoustic emissions. This paper is focused on the determination of the position of sources of partial discharges in electrical insulation for maintenance based on the condition of the electrical equipment. The use of this phenomenon is a mere example of the capabilities of the proposed method but it is very representative because the emission can be electromagnetic in the VHF and UHF ranges or acoustic. This paper presents a method to locate more than one source in space with only two receivers, one of them in a fixed position and the other describing a circumference around the first one. The signals arriving from the different sources to the antennas are first separated using a classification technique based on their spectral components. Then, the individualized time differences of arrival (TDOA) from the sources collected at different angles describe a function, angle versus TDOA, that has all the geometric information needed to locate the source. The paper will show how to derive these functions for any source analytically with the position of the source as unknown parameters. Then, it will be demonstrated that it is possible to fit the curve with experimental measurements of the TDOA to obtain the parameters of the position of each source. Finally, the technique is extended to the localization of the emitter in three dimensions. Full article
Show Figures

Figure 1

Back to TopTop