Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,349)

Search Parameters:
Keywords = exhibition environments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1018 KiB  
Article
A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis
by Tingyu Tao and Hao Zhang
Atmosphere 2025, 16(8), 944; https://doi.org/10.3390/atmos16080944 (registering DOI) - 6 Aug 2025
Abstract
Improving carbon emission efficiency (CEE) is crucial for coordinating economic development and reducing carbon emissions. Drawing on panel data for 30 provinces in China from 2013 to 2022, this paper selects six key antecedent conditions guided by the Technology–Organization–Environment (TOE) framework. Then the [...] Read more.
Improving carbon emission efficiency (CEE) is crucial for coordinating economic development and reducing carbon emissions. Drawing on panel data for 30 provinces in China from 2013 to 2022, this paper selects six key antecedent conditions guided by the Technology–Organization–Environment (TOE) framework. Then the dynamic qualitative comparative analysis (DQCA) is employed to explore CEE improvement pathways from a configurational perspective, and regression analysis is used to compare the driving effects of different pathways. The findings reveal that (1) single factors cannot independently achieve high CEE; instead, multiple factors must work synergistically to form various improvement pathways, including “technology–organization dual-driven”, “environment-dominated”, and “multi-equilibrium” pathways, with industrial structure upgrading as the core factor for improving CEE; (2) temporally, these improvement pathways demonstrate universality, while, spatially, they exhibit significant provincial heterogeneity; and (3) in terms of marginal effects, the “multi-equilibrium” pathway has the strongest driving effect on CEE. The findings provide valuable policy implications for developing targeted CEE enhancement strategies across provinces at different developmental stages. Full article
Show Figures

Figure 1

20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

27 pages, 4680 KiB  
Article
Gecko-Inspired Robots for Underground Cable Inspection: Improved YOLOv8 for Automated Defect Detection
by Dehai Guan and Barmak Honarvar Shakibaei Asli
Electronics 2025, 14(15), 3142; https://doi.org/10.3390/electronics14153142 - 6 Aug 2025
Abstract
To enable intelligent inspection of underground cable systems, this study presents a gecko-inspired quadruped robot that integrates multi-degree-of-freedom motion with a deep learning-based visual detection system. Inspired by the gecko’s flexible spine and leg structure, the robot exhibits strong adaptability to confined and [...] Read more.
To enable intelligent inspection of underground cable systems, this study presents a gecko-inspired quadruped robot that integrates multi-degree-of-freedom motion with a deep learning-based visual detection system. Inspired by the gecko’s flexible spine and leg structure, the robot exhibits strong adaptability to confined and uneven tunnel environments. The motion system is modeled using the standard Denavit–Hartenberg (D–H) method, with both forward and inverse kinematics derived analytically. A zero-impact foot trajectory is employed to achieve stable gait planning. For defect detection, the robot incorporates a binocular vision module and an enhanced YOLOv8 framework. The key improvements include a lightweight feature fusion structure (SlimNeck), a multidimensional coordinate attention (MCA) mechanism, and a refined MPDIoU loss function, which collectively improve the detection accuracy of subtle defects such as insulation aging, micro-cracks, and surface contamination. A variety of data augmentation techniques—such as brightness adjustment, Gaussian noise, and occlusion simulation—are applied to enhance robustness under complex lighting and environmental conditions. The experimental results validate the effectiveness of the proposed system in both kinematic control and vision-based defect recognition. This work demonstrates the potential of integrating bio-inspired mechanical design with intelligent visual perception to support practical, efficient cable inspection in confined underground environments. Full article
(This article belongs to the Special Issue Robotics: From Technologies to Applications)
35 pages, 8847 KiB  
Article
From Pulp to Froth: Decoding the Role of Nanoparticle Colloidal Silica in Scheelite Flotation as a Calcite Depressant
by Borhane Ben Said, Suvarna Patil, Martin Rudolph, Daniel Goldmann and Lucas Pereira
Minerals 2025, 15(8), 834; https://doi.org/10.3390/min15080834 - 6 Aug 2025
Abstract
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the [...] Read more.
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the flotation subprocesses modulated by colloidal silica. This work also aims to determine the specific flotation zones affected by colloidal silica, assessing the influence of its dosage, surface modification, and specific surface area on metallurgical outcomes. Atomic force microscopy revealed mineral-specific surface responses to colloidal silica conditioning: calcite exhibited localized nanoparticle adsorption, whereas apatite underwent a dissolution–reprecipitation mechanism. Scheelite and fluorite, in contrast, showed minimal surface modifications. These differences are attributed to variations in surface reactivity, hydration behavior, and crystallographic structure, with calcite offering a uniquely favorable environment for colloidal silica attachment. Mechanistic insights show that colloidal silica—especially the aluminate-modified type with high specific surface area—influences both the pulp and froth zones by producing small, stable bubbles, enhancing fine scheelite recovery, stabilizing froth, and effectively depressing calcite. In contrast, non-functionalized colloidal silica resulted in poor bubble control and unstable froth. These findings elucidate the subprocess-specific mechanisms by which colloidal silica operates and highlight its potential as a tunable, multifunctional reagent for improving selectivity in the flotation of semi-soluble salt-type minerals. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Mineral Processing)
Show Figures

Graphical abstract

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

13 pages, 444 KiB  
Brief Report
Swiping Disrupts Switching: Preliminary Evidence for Reduced Cue-Based Preparation Following Short-Form Video Exposure
by Wanying Luo, Xinran Zhao, Bingshan Jiang, Qiang Fu and Juan’er Zheng
Behav. Sci. 2025, 15(8), 1070; https://doi.org/10.3390/bs15081070 - 6 Aug 2025
Abstract
The rapid rise of short-form video platforms such as TikTok and Instagram Reels has transformed digital engagement by promoting fragmented, high-tempo swiping behaviors and intense sensory stimulation. While these platforms dominate daily use, their impact on higher-order cognition remains underexplored. This study provides [...] Read more.
The rapid rise of short-form video platforms such as TikTok and Instagram Reels has transformed digital engagement by promoting fragmented, high-tempo swiping behaviors and intense sensory stimulation. While these platforms dominate daily use, their impact on higher-order cognition remains underexplored. This study provides preliminary behavioral experimental evidence that even brief exposure to short-form video environments may be associated with reduced cue-based task preparation, a specific subcomponent of proactive cognitive flexibility. In a randomized between-subjects design, participants (N = 72) viewed either 30 min of TikTok-style content, a neutral documentary, or no video (passive control), followed by a task-switching paradigm with manipulated cue–target intervals (CTIs). As expected, the documentary and control group exhibited significant preparation benefits at longer CTIs, reflected in reduced switching costs—consistent with effective anticipatory task-set updating. In contrast, the short video group failed to leverage extended preparation time, indicating a selective disruption of goal-driven processing. Notably, performance at short CTIs did not differ across groups, reinforcing the interpretation that reactive control remained intact, while proactive preparation was selectively impaired. These findings link habitual “swiping” to disrupted task-switching efficiency—a phenomenon summarized as swiping disrupts switching. These findings suggest that short-form video exposure may temporarily bias attentional regulation toward stimulus-driven reactivity, thereby undermining anticipatory cognitive control. Given the widespread use of short-form video platforms—especially among young adults—these results underscore the need to better understand how media design features interact with cognitive control systems. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 3858 KiB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

19 pages, 1541 KiB  
Article
A Formal Definition of Scale-Dependent Complexity and the Multi-Scale Law of Requisite Variety
by Alexander F. Siegenfeld and Yaneer Bar-Yam
Entropy 2025, 27(8), 835; https://doi.org/10.3390/e27080835 - 6 Aug 2025
Abstract
Ashby’s law of requisite variety allows a comparison of systems with their environments, providing a necessary (but not sufficient) condition for system efficacy: A system must possess at least as much complexity as any set of environmental behaviors that require distinct responses from [...] Read more.
Ashby’s law of requisite variety allows a comparison of systems with their environments, providing a necessary (but not sufficient) condition for system efficacy: A system must possess at least as much complexity as any set of environmental behaviors that require distinct responses from the system. However, to account for the dependence of a system’s complexity on the level of detail—or scale—of its description, a multi-scale generalization of Ashby’s law is needed. We define a class of complexity profiles (complexity as a function of scale) that is the first, to our knowledge, to exhibit a multi-scale law of requisite variety. This formalism provides a characterization of multi-scale complexity and generalizes the law of requisite variety’s single constraint on system behaviors to a class of multi-scale constraints. We show that these complexity profiles satisfy a sum rule, which reflects a tradeoff between smaller- and larger-scale degrees of freedom, and we extend our results to subdivided systems and systems with a continuum of components. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

18 pages, 484 KiB  
Article
LLM-Guided Ensemble Learning for Contextual Bandits with Copula and Gaussian Process Models
by Jong-Min Kim
Mathematics 2025, 13(15), 2523; https://doi.org/10.3390/math13152523 - 6 Aug 2025
Abstract
Contextual multi-armed bandits (CMABs) are vital for sequential decision-making in areas such as recommendation systems, clinical trials, and finance. We propose a simulation framework integrating Gaussian Process (GP)-based CMABs with vine copulas to model dependent contexts and GARCH processes to capture reward volatility. [...] Read more.
Contextual multi-armed bandits (CMABs) are vital for sequential decision-making in areas such as recommendation systems, clinical trials, and finance. We propose a simulation framework integrating Gaussian Process (GP)-based CMABs with vine copulas to model dependent contexts and GARCH processes to capture reward volatility. Rewards are generated via copula-transformed Beta distributions to reflect complex joint dependencies and skewness. We evaluate four policies—ensemble, Epsilon-greedy, Thompson, and Upper Confidence Bound (UCB)—over 10,000 replications, assessing cumulative regret, observed reward, and cumulative reward. While Thompson sampling and LLM-guided policies consistently minimize regret and maximize rewards under varied reward distributions, Epsilon-greedy shows instability, and UCB exhibits moderate performance. Enhancing the ensemble with copula features, GP models, and dynamic policy selection driven by a large language model (LLM) yields superior adaptability and performance. Our results highlight the effectiveness of combining structured probabilistic models with LLM-based guidance for robust, adaptive decision-making in skewed, high-variance environments. Full article
(This article belongs to the Special Issue Privacy-Preserving Machine Learning in Large Language Models (LLMs))
Show Figures

Figure 1

19 pages, 4142 KiB  
Article
Onboard Real-Time Hyperspectral Image Processing System Design for Unmanned Aerial Vehicles
by Ruifan Yang, Min Huang, Wenhao Zhao, Zixuan Zhang, Yan Sun, Lulu Qian and Zhanchao Wang
Sensors 2025, 25(15), 4822; https://doi.org/10.3390/s25154822 - 5 Aug 2025
Abstract
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA [...] Read more.
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA SSD storage. Through hardware-level task partitioning—utilizing FPGA for high-speed data buffering and ARM for core computational processing—it achieves a real-time end-to-end acquisition–storage–processing–display pipeline. The compact integrated device exhibits a total weight of merely 6 kg and power consumption of 40 W, suitable for airborne platforms. Experimental validation confirms the system’s capability to store over 200 frames per second (at 640 × 270 resolution, matching the camera’s maximum frame rate), quick-look imaging capability, and demonstrated real-time processing efficacy via relative radio-metric correction tasks (processing 5000 image frames within 1000 ms). This framework provides an effective technical solution to address hyperspectral data processing bottlenecks more efficiently on UAV platforms for dynamic scenario applications. Future work includes actual flight deployment to verify performance in operational environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 1241 KiB  
Review
PCOS and the Genome: Is the Genetic Puzzle Still Worth Solving?
by Mario Palumbo, Luigi Della Corte, Dario Colacurci, Mario Ascione, Giuseppe D’Angelo, Giorgio Maria Baldini, Pierluigi Giampaolino and Giuseppe Bifulco
Biomedicines 2025, 13(8), 1912; https://doi.org/10.3390/biomedicines13081912 - 5 Aug 2025
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. Objective: This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations. Methods: A comprehensive search was conducted across MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Library using MeSH terms including “PCOS”, “Genes involved in PCOS”, and “Etiopathogenesis of PCOS” from January 2015 to June 2025. The selection process followed the SANRA quality criteria for narrative reviews. Seventeen studies published in English were included, focusing on original data regarding gene expression, polymorphisms, and epigenetic changes associated with PCOS. Results: The studies analyzed revealed a wide array of molecular alterations in PCOS, including the dysregulation of SIRT and estrogen receptor genes, altered transcriptome profiles in cumulus cells, and the involvement of long non-coding RNAs and circular RNAs in granulosa cell function and endometrial receptivity. Epigenetic mechanisms such as the DNA methylation of TGF-β1 and inflammation-related signaling pathways (e.g., TLR4/NF-κB/NLRP3) were also implicated. Some genetic variants—particularly in DENND1A, THADA, and MTNR1B—exhibit signs of positive evolutionary selection, suggesting possible ancestral adaptive roles. Conclusions: PCOS is increasingly recognized as a syndrome with a strong genetic and epigenetic background. The identification of specific molecular signatures holds promise for the development of personalized diagnostic markers and therapeutic targets. Future research should focus on large-scale genomic studies and functional validation to better understand gene–environment interactions and their influence on phenotypic variability in PCOS. Full article
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

Back to TopTop