Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = exhaust air heat recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1401 KB  
Article
Thermodynamic, Economic, and Environmental Analysis and Optimization of a Multi-Heat-Source Organic Rankine Cycle for Large Marine Diesel Engine
by Youyi Li and Jinao Shen
Processes 2025, 13(11), 3651; https://doi.org/10.3390/pr13113651 - 11 Nov 2025
Viewed by 439
Abstract
The Organic Rankine Cycle (ORC)-based waste-heat recovery system represents an important technological pathway toward decarbonization in the maritime industry. This study focuses on the design and optimization of a multi-heat-source Organic Rankine Cycle (MHSORC) power generation system specifically developed for large marine diesel [...] Read more.
The Organic Rankine Cycle (ORC)-based waste-heat recovery system represents an important technological pathway toward decarbonization in the maritime industry. This study focuses on the design and optimization of a multi-heat-source Organic Rankine Cycle (MHSORC) power generation system specifically developed for large marine diesel engines, which simultaneously utilizes exhaust gas, cylinder jacket water, and scavenging air as heat sources. Unified thermodynamic, economic, and environmental models are constructed to evaluate the coupled performance of the system.Eight low GWP working fluids are assessed, and a multi-objective optimization is performed to balance efficiency, cost, and environmental impact. The optimal design point is subsequently identified using a decision-making algorithm. The results indicate that, for the MHSORC, higher evaporating temperatures and lower condensing temperatures improve system performance, and the heat-source temperature exerts a direct and substantial influence on that performance. Among the candidate fluids, R601 exhibits the best overall performance, whereas R1234ze performs the worst. With R601 as the working fluid, the MHSORC achieves an exergy efficiency of 41.69%, a LCOE of 0.0495 $/kWh, and greenhouse gas emissions of 0.8019 kt of CO2,eq. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 30964 KB  
Article
Experimental Assessment of a Passive Waste Heat Recovery System Using Thermosyphons and Thermoelectric Generators for Integration into District Heating Applications
by Luis V. G. Fachini, Pedro Leineker Ochoski Machado, Kamal A. R. Ismail, Felipe M. Biglia, Aleffe J. C. Vaz, Romeu M. Szmoski and Thiago Antonini Alves
Energies 2025, 18(19), 5090; https://doi.org/10.3390/en18195090 - 25 Sep 2025
Viewed by 767
Abstract
The efficient recovery of waste heat is essential for improving sustainability in industrial and urban energy systems. This study presents the experimental evaluation of a passive heat recovery unit composed of finned thermosyphons and Bismuth Telluride (Bi2Te3) thermoelectric generators [...] Read more.
The efficient recovery of waste heat is essential for improving sustainability in industrial and urban energy systems. This study presents the experimental evaluation of a passive heat recovery unit composed of finned thermosyphons and Bismuth Telluride (Bi2Te3) thermoelectric generators (TEGs). The primary objective was to characterize its simultaneous thermal recovery and electrical generation capabilities under airflow and temperature conditions simulating low-grade industrial exhaust streams. The system was tested in an open-loop wind tunnel simulating exhaust gases under air velocities of 0.6, 1.1, and 1.7 m/s. Heat was transferred to the TEGs through finned thermosyphons, enabling power generation via the Seebeck effect. The passive heat exchange mechanism successfully recovered up to 250.9 W of thermal power, preheating the inlet air by a maximum of 9.5 °C with a peak thermal effectiveness of 44.4%. Simultaneously, the system achieved a maximum temperature difference of 30.0 °C across the thermoelectric modules, generating a total electrical power of 163.7 mW (81.8 mW per TEG). This dual-purpose operation resulted in a maximum overall first-law efficiency of 9.38% and an electrical power density of 52.20 W/m2 from the low-grade thermal stream. These results confirm the technical feasibility of this compact, passive, and maintenance-free design, highlighting its potential for integration into applications like district heating or industrial ventilation, where balancing thermal and electrical outputs is crucial. Full article
Show Figures

Figure 1

14 pages, 638 KB  
Article
Improvement of the Potato Protein Drying Process as an Example of Implementing Sustainable Development in Industry
by Tomasz P. Olejnik, Józef Ciuła, Paweł Tomtas, Iwona Wiewiórska and Elżbieta Sobiecka
Sustainability 2025, 17(18), 8158; https://doi.org/10.3390/su17188158 - 10 Sep 2025
Viewed by 620
Abstract
This article describes the implemented technological solution of utilizing waste heat by upgrading the potato protein drying line and using energy recuperation in the drying plant. In this article, the technological sequence of the potato starch and potato protein production plant was analyzed [...] Read more.
This article describes the implemented technological solution of utilizing waste heat by upgrading the potato protein drying line and using energy recuperation in the drying plant. In this article, the technological sequence of the potato starch and potato protein production plant was analyzed and the identification of possible solutions that lead to a reduction in energy demand was described. The method of analyzing the processing data is based on existing models describing the flow of mass and energy fluxes. The authors did not seek new mathematical descriptions of the physicochemical phenomena occurring during the drying processes, and only modification of the technological line based on the current state of knowledge in process engineering has been proposed. The full heat recovery of the production line was applied, and the exhaust air after drying and the heat from the decanter leachate after centrifugation of the coagulated potato protein, from two energy-coupled starch dryers, were used as the source of recovered heat energy. Temperature measurements were taken at key process nodes, and the energy effects were estimated after the process line upgrade. The solution proposed in the article fits with circular economy, bringing notable economic and environmental benefits consisting of utilizing waste heat from technological processes in the food industry. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

23 pages, 3138 KB  
Article
Design of Organic Rankine Cycle Recovering Multi-Grade Waste Heat from a Two-Stroke Marine Engine
by Jinfeng Feng, Yuncheng Gu, Shengjun Han, Xunhu Zhao, Yujun Tang, Sipeng Zhu, Hao Yuan and Guihua Wang
J. Mar. Sci. Eng. 2025, 13(9), 1679; https://doi.org/10.3390/jmse13091679 - 1 Sep 2025
Cited by 1 | Viewed by 1762
Abstract
Waste heat recovery using Organic Rankine Cycle (ORC) systems shows significant potential for reducing CO2 emissions from ships. This study designs and analyzes ORC systems for recovering multi-grade waste heat from the exhaust gas, jacket water, and scavenging air of a marine [...] Read more.
Waste heat recovery using Organic Rankine Cycle (ORC) systems shows significant potential for reducing CO2 emissions from ships. This study designs and analyzes ORC systems for recovering multi-grade waste heat from the exhaust gas, jacket water, and scavenging air of a marine two-stroke diesel engine. A thermodynamic model is developed to investigate the effects of working fluid preheating temperature, evaporation pressure, and heat source conditions on system performance. Results show that appropriately increasing the preheating temperature of the working fluid can enhance power output. For hydrocarbons with higher critical temperatures, power output exhibits an extremum as preheating temperature increases, while for fluids with lower critical temperatures, power output increases continuously until the evaporation pressure limit is reached. Increasing evaporation pressure decreases power output but improves thermal efficiency, with a corresponding increase in heat transfer and exergy loss rates in the exhaust gas preheater. Additionally, the temperature of the heat source has an important effect on the energy and exergy balance distribution and power output of the ORC. For every 10 K rise in exhaust temperature, the bottoming cycle power output of cyclohexane increases by approximately 12.3%. This study provides theoretical support for efficient marine waste heat recovery and working fluid selection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1565 KB  
Article
Impact of High-Efficiency Filter Pressure Drop on the Energy Performance of Residential Energy Recovery Ventilators
by Suh-hyun Kwon, Beungyong Park and Byoungchull Oh
Energies 2025, 18(16), 4326; https://doi.org/10.3390/en18164326 - 14 Aug 2025
Viewed by 1826
Abstract
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the [...] Read more.
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the airflow, fan energy use, and heat exchange balance. This study quantitatively investigates how different levels of filter resistance—from clean conditions to 200% dust loading—affect system airflow, static pressure, exhaust air transfer, and power consumption. A standardized dust loading procedure was adopted to simulate long-term use conditions. The results show a 37% reduction in net supply airflow under heavily clogged filters, while the unit exhaust air transfer ratio increased from 7.2% to 17.7%, exceeding compliance limits. Surprisingly, electrical energy consumption decreased as the fan load dropped with the airflow. Despite an increase in the apparent heat exchange efficiency, this gain was driven by return air recirculation rather than true thermal effectiveness. These findings highlight the need for filter performance-based ERV certification and operational strategies that balance IAQ, energy use, and system compliance. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

37 pages, 1099 KB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 1344
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

22 pages, 5204 KB  
Article
Ventilation Strategies for Deep Energy Renovations of High-Rise Apartment Buildings: Energy Efficiency and Implementation Challenges
by Anti Hamburg, Ülar Palmiste, Alo Mikola and Targo Kalamees
Energies 2025, 18(11), 2785; https://doi.org/10.3390/en18112785 - 27 May 2025
Cited by 2 | Viewed by 2786
Abstract
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of [...] Read more.
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of different mechanical ventilation solutions with heat recovery, including centralized and decentralized balanced ventilation with heat recovery, single-room ventilation units, and mechanical extract ventilation with heat pump heat recovery or without heat recovery. An onsite survey revealed significant deficiencies in existing ventilation systems, such as airtight window installations without dedicated fresh air valves, misaligned and decayed exhaust shafts, and inadequate extract airflow in kitchens and bathrooms. SWOT analyses for each system highlighted their strengths, weaknesses, opportunities, and threats, providing valuable insights for decision-makers. The results indicate that while centralized and decentralized mechanical ventilation with heat recovery enhances energy efficiency and indoor air quality in high-rise multifamily apartment buildings, challenges such as high installation costs, maintenance complexity, and architectural constraints must be addressed. Heat recovery with exhaust air heat pumps is a viable alternative for high-rise apartment buildings when more efficient options are not feasible. Full article
(This article belongs to the Special Issue Recent Challenges in Buildings Ventilation and Indoor Air Quality)
Show Figures

Figure 1

26 pages, 3831 KB  
Article
Validation of a Heat Pump System Model for Energy Recycling in Grocery Stores Through On-Site Energy Monitoring
by Niklas Söderholm, Mikko Gröndahl, Tuomo Niemelä, Juha Jokisalo, Risto Kosonen and Long Ni
Energies 2025, 18(4), 1003; https://doi.org/10.3390/en18041003 - 19 Feb 2025
Cited by 2 | Viewed by 1426
Abstract
This paper presents a validated simulation model for heat pump-based energy recycling systems, with a focus on heat recovery applications in grocery stores. Heat is recovered through heat pumps from a subcritical CO2-based refrigeration system, with exhaust air heat recovery used [...] Read more.
This paper presents a validated simulation model for heat pump-based energy recycling systems, with a focus on heat recovery applications in grocery stores. Heat is recovered through heat pumps from a subcritical CO2-based refrigeration system, with exhaust air heat recovery used on demand according to the heating demand. The model is validated through a case study on a Finnish hypermarket-sized grocery store, where the heat pump system has been operational since 2020. Multi-objective energy optimization is used to validate the model by estimating critical decision variable values and providing error estimates compared to the measured data. The calibrated energy system model has a maximum mean bias error, MBE, of ±5% and a 10–15% coefficient of variation of root mean squared error, CV(RMSE), for the heat pump-related energy balance. Energy optimizations indicate that the control algorithm of the investigated heat pump system can be enhanced to reduce district heating consumption by 12%. The study emphasizes the need for numerous input parameters tailored to a system-specific layout to accurately reproduce the heat pump system’s control algorithm. Compared to a typical transcritical CO2 booster system with heat recovery, the novel heat recovery system shows superior heat recovery potential and a high total COP for both heating and cooling. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

21 pages, 5719 KB  
Article
Exergy Analysis of a Convective Heat Pump Dryer Integrated with a Membrane Energy Recovery Ventilator
by Anand Balaraman, Md Ashiqur Rahman, Davide Ziviani and David M. Warsinger
Entropy 2025, 27(2), 197; https://doi.org/10.3390/e27020197 - 13 Feb 2025
Cited by 1 | Viewed by 2375
Abstract
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. [...] Read more.
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. Lower temperature dehumidification systems make efficient use of membrane energy recovery ventilators (MERVs) that do not need vacuum pumps, but their high heat losses and lack of vapor selectivity have prevented their use in industrial drying. In this work, we propose an insulating membrane energy recovery ventilator for moisture removal from drying exhaust air, thereby reducing sensible heat loss from the dehumidification process and reheating energy. The second law analysis of the proposed system is carried out and compared with a baseline convective heat pump dryer. Irreversibilities in each component under different ambient temperatures (5–35 °C) and relative humidity (5–95%) are identified. At an ambient temperature of 35 °C, the proposed system substantially reduces sensible heat loss (47–60%) in the dehumidification process, resulting in a large reduction in condenser load (45–50%) compared to the baseline system. The evaporator in the proposed system accounts for up to 59% less irreversibility than the baseline system. A maximum of 24.5% reduction in overall exergy input is also observed. The highest exergy efficiency of 10.2% is obtained at an ambient condition of 35 °C and 5% relative humidity, which is more than twice the efficiency of the baseline system under the same operating condition. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

23 pages, 3351 KB  
Article
Assessing the Economic and Environmental Dimensions of Large-Scale Energy-Efficient Renovation Decisions in District-Heated Multifamily Buildings from Both the Building and Urban Energy System Perspectives
by Alaa Khadra, Jan Akander, Xingxing Zhang and Jonn Are Myhren
Energies 2025, 18(3), 513; https://doi.org/10.3390/en18030513 - 23 Jan 2025
Cited by 1 | Viewed by 1337
Abstract
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily [...] Read more.
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily building project that is district-heated, considering both the building and the broader urban energy system. A systematic framework was developed for this assessment and applied to a real case in Sweden, where emission factors from energy production are significantly lower than the EU average: 114 g CO2e/kWh for district heating and 37 g CO2e/kWh for electricity. The project involved the renovation of four similar district-heated multifamily buildings with comparable energy efficiency measures. The primary distinction between the measures lies in the type of HVAC system installed: (1) exhaust ventilation with air pressure control, (2) mechanical ventilation with heat recovery, (3) exhaust ventilation with an exhaust air heat pump, and (4) exhaust ventilation with an exhaust air heat pump combined with photovoltaic (PV) panels. The study’s findings show that the building with an exhaust air heat pump which operates intermittently with PV panels achieves the best environmental performance from both perspectives. A key challenge identified for future research is balancing the reduced electricity production from Combined Heat and Power (CHP) plants within the energy system. Full article
(This article belongs to the Special Issue Advances in Energy Management and Control for Smart Buildings)
Show Figures

Figure 1

17 pages, 5082 KB  
Article
Data-Driven-Based Full Recovery Technology and System for Transformer Insulating Oil
by Feng Chen, Li Wang, Zhiyao Zheng, Bin Pan, Yujia Hu and Kexin Zhang
Energies 2024, 17(24), 6345; https://doi.org/10.3390/en17246345 - 17 Dec 2024
Cited by 1 | Viewed by 1354
Abstract
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization [...] Read more.
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization module, an exhaust gas treatment module, and an online monitoring module. By combining steps such as oil extraction, residual oil absorption, hot air circulation heating, and negative-pressure low-frequency induction heating, the complete recovery of waste oil is achieved. The recovery process incorporates oil–gas saturation monitoring and an oil–gas precipitation assessment algorithm based on neural networks to enable intelligent control, ensuring thorough recovery of residual oil from transformers. The proposed system and methods demonstrate excellent recovery efficiency and environmental protection effects during the pre-treatment of waste transformer oil. Experiments conducted on 50 discarded transformers showed an average recovery efficiency exceeding 99%, with 49 transformers exhibiting no damage to core components after the recovery process. From a theoretical perspective, this research introduces monitoring and control methods for transformer insulating oil recovery, providing significant support for the green processing and reutilization of discarded transformer insulating oil. From an application value perspective, the recovery process helps reduce environmental pollution and facilitates the disassembly of transformers. This enables better analysis of transformer operating characteristics, thereby enhancing the reliability and safety of power systems. Full article
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Banana Ripening Plant with a Low Global Warming Potential Refrigerant and Heat Recovery for the Romanian Climate
by Alina Viorica Girip, Alexandru Panait and Anica Ilie
AgriEngineering 2024, 6(4), 4658-4674; https://doi.org/10.3390/agriengineering6040266 - 3 Dec 2024
Viewed by 2591
Abstract
This paper presents a banana ripening chamber system for Romania. The system comprises two main parts: the refrigerating unit, with a cooling capacity of 47.5 kW, and a fresh air supply system for ethylene exhaust during the ripening process (1000 m3/h). [...] Read more.
This paper presents a banana ripening chamber system for Romania. The system comprises two main parts: the refrigerating unit, with a cooling capacity of 47.5 kW, and a fresh air supply system for ethylene exhaust during the ripening process (1000 m3/h). The proposed solution replaces the classical one-stage vapor compression with R134a. The new solution presented in this study has a proven fruit ripening solution that includes the 3Es; it is eco-friendly (low GWP refrigerant R1234ze(E)), economical, and energy efficient (AHU with heat recovery). The advantage of the new system results from an increasing coefficient of performance, with 7.34% owing to decreasing the power consumption of the compressors. Regarding heat recovery, the annual energy consumption for ventilation is lower, using (annual average) 41% less energy than without heat recovery. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

22 pages, 8456 KB  
Article
Soot Particle Emissions: Formation and Suppression Mechanisms in Gas Turbines
by Matthieu Vierling, Maher Aboujaib, Richard Denolle, Jean-François Brilhac and Michel Molière
Gases 2024, 4(4), 446-467; https://doi.org/10.3390/gases4040023 - 26 Nov 2024
Cited by 1 | Viewed by 3215
Abstract
This article reports on field tests devoted to the emissions of particles from gas turbines (GT) and more particularly to the formation of soot and its suppression by fuel additives. These field tests involved four heavy-duty gas turbines used as power generators and [...] Read more.
This article reports on field tests devoted to the emissions of particles from gas turbines (GT) and more particularly to the formation of soot and its suppression by fuel additives. These field tests involved four heavy-duty gas turbines used as power generators and equipped with air atomization systems. These machines were running on natural gas, No. 2 distillate oil, heavy crude oil and heavy fuel oil, respectively. The GT running on natural gas produced no soot or ash and its upstream air filtration system in fact allowed lower concentrations of exhaust particles than those found in ambient air. Soot emitted when burning the three liquid fuels (No. 2 distillate; heavy crude oil; and heavy oil) was effectively reduced using fuel additives based on iron(III), cerium(III) and cerium(IV). Cerium was found to be very effective as a soot suppressant and gave rise to two surprising effects: cerium(III) performed better than cerium(IV) and a “memory effect” was observed in the presence of heat recovery boilers due to the deposition of active cerium species. All of the reported results, both regarding natural gas emissions and soot reduction, are original. A review of the soot formation mechanisms and a detailed interpretation of the test results are provided. Full article
Show Figures

Figure 1

20 pages, 2492 KB  
Article
A Study of Heat Recovery and Hydrogen Generation Systems for Methanol Engines
by Sviatoslav Kryshtopa, Ruslans Smigins and Liudmyla Kryshtopa
Energies 2024, 17(21), 5266; https://doi.org/10.3390/en17215266 - 23 Oct 2024
Cited by 2 | Viewed by 1723
Abstract
Biofuels are the most essential types of alternative fuels, which currently have significant potential to reduce CO2 emissions compared to fossil fuels. Methanol is a more efficient fuel than petrol due to its physicochemical properties, such as a higher latent heat of [...] Read more.
Biofuels are the most essential types of alternative fuels, which currently have significant potential to reduce CO2 emissions compared to fossil fuels. Methanol is a more efficient fuel than petrol due to its physicochemical properties, such as a higher latent heat of vaporization, research octane number, and heat of combustion of the fuel–air mixture. Also, biomethanol is cheaper than traditional petrol and diesel fuel for agricultural countries. The authors have proposed a new approach to improve the characteristics and efficiency of methanol diesel engines by using biomethanol mixed with hydrogen instead of pure biomethanol. Using a hydrogen–biomethanol mixture in modern engines is an effective method because hydrogen is a carbon-free, low-ignition, highest-flame-rate, high-octane fuel. A small quantity of hydrogen added to biomethanol and its combustion in an engine with a heat exchanger increases the combustion temperature and heat release, increases engine power, and reduces fuel consumption. This article presents experimental results of methanol combustion and a hydrogen-in-methanol mixture if hydrogen was retained due to the utilization of the heat of the exhaust gases. The tests were carried on a single-cylinder experimental engine with an injection of liquid methanol and gaseous hydrogen mixtures. The experiments showed that green hydrogen generated onboard the car due to the utilization of heat significantly reduced fuel costs of engines of vehicles and technological installations. It was established a hydrogen gaseous mixture addition of up to 5% by mass to methanol requires a corresponding change in the coefficient of excess air to λ = 1.25. Also, using an additional hydrogen mixture requires adjustment at the ignition moment in the direction of its decrease by 4–5 degrees of the engine crankshaft. Hydrogen gas mixture addition reduced methanol consumption, reaching a maximum reduction of 24%. The maximum increase in power was 30.5% based on experimental data. The reduction in the specified fuel consumption, obtained after experimental tests of the methanol research engine on the stand, can be implemented on the vehicle engines and technological installations equipped with an onboard heat recovery system. Such a system, due to the utilization of heat and the supply of additional hydrogen, can be implemented for engines that work on any alternative or traditional fuels. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

12 pages, 1723 KB  
Article
Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser
by Hyeonrok Choi, Won Yang, Yongwoon Lee and Changkook Ryu
Energies 2024, 17(19), 4799; https://doi.org/10.3390/en17194799 - 25 Sep 2024
Cited by 1 | Viewed by 1580
Abstract
A flue gas condenser (FGC) system recovers heat from exhaust flue gases in energy production and chemical plants, reducing air pollution due to dust, SOx, and HCl. An FGC system is divided into indirect contact condenser (ICC) and direct contact condenser (DCC) types. [...] Read more.
A flue gas condenser (FGC) system recovers heat from exhaust flue gases in energy production and chemical plants, reducing air pollution due to dust, SOx, and HCl. An FGC system is divided into indirect contact condenser (ICC) and direct contact condenser (DCC) types. In an ICC, the exhaust gases do not mix with the working fluid, and a water film is formed during flue gas condensation for partial SOx removal. In a DCC, direct mixing of the exhaust flue gas with the cooling fluid (mainly water) occurs, with simultaneous absorption of SOx. In this study, we investigated the SO2 removal efficiency and heat recovery of an ICC, a DCC, and a DCC–ICC hybrid system, and compared the results of the hybrid system with those obtained for a single DCC type at the same liquid-to-gas (L/G) ratio. The SO2 removal characteristics of the hybrid system were examined based on the L/G ratio and absorbent-to-SO2 molar ratio. In the reference ICC-type FGC system, the exit temperature of the mixed gas was 28 °C, with the condensed water ratio and heat recovery efficiency being 80.9% and 93.4%, respectively. At an L/G ratio of 1.5–3.5, the SO2 removal efficiency of a single DCC was 31.5–65.9%, whereas that of the hybrid FGC system (with packing material) increased from 47.1% to 72.3%, which further increased to ~90% upon the addition of NaOH at a molar ratio of 0.7 and an L/G ratio of 1.5. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop