Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = exciton-electron scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2372 KiB  
Article
Systematic Simulations of Structural Stability, Phonon Dispersions, and Thermal Expansion in Zinc-Blende ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(4), 308; https://doi.org/10.3390/nano15040308 - 17 Feb 2025
Cited by 2 | Viewed by 1269
Abstract
Zinc oxide (ZnO) has recently gained considerable attention due to its exceptional properties, including higher electron mobility, good thermal conductivity, high breakdown voltage, and a relatively large exciton-binding energy. These characteristics helped engineers to develop low dimensional heterostructures (LDHs)-based advanced flexible/transparent nanoelectronics, which [...] Read more.
Zinc oxide (ZnO) has recently gained considerable attention due to its exceptional properties, including higher electron mobility, good thermal conductivity, high breakdown voltage, and a relatively large exciton-binding energy. These characteristics helped engineers to develop low dimensional heterostructures (LDHs)-based advanced flexible/transparent nanoelectronics, which were then integrated into thermal management systems. Coefficients of thermal expansion αT, phonon dispersions  ωj(q), and Grüneisen parameters  γjq can play important roles in evaluating the suitability of materials in such devices. By adopting a realistic rigid-ion model in the quasi-harmonic approximation, this work aims to report the results of a methodical study to comprehend the structural, lattice dynamical, and thermodynamic behavior of zinc-blende (zb) ZnO. Systematic calculations of ωj(q), γjq, and αT have indicated negative thermal expansion (NTE) at low T. Soft transverse acoustic shear mode gammas  γTA at critical points offered major contributions to NTE. Our results of ωj(q) at ambient pressure compare reasonably well with Raman scattering spectroscopy measurements and first-principles calculations. By adjusting the layers of materials with positive and negative thermal expansion, it is possible to create LDHs with near-zero αT. Such a nanostructure might experience a minimal dimensional change with T fluctuations, making it ideal for devices where precise dimensional stability is crucial. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

10 pages, 5775 KiB  
Article
Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance
by Nikita Khairnar, Hyukmin Kwon, Sunwoo Park, Sangwook Park, Hayoon Lee and Jongwook Park
Crystals 2024, 14(11), 937; https://doi.org/10.3390/cryst14110937 - 29 Oct 2024
Cited by 1 | Viewed by 1340
Abstract
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and [...] Read more.
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and determining the optimal mixing ratio. A mixture dispersion of CsPbBr3 and ZnO, prepared at a 1:0.015 weight ratio through shaking, was fabricated into a film using the spin coating method. The PL intensity of this film showed a relative increase of 20% compared to the original CsPbBr3 QD film without ZnO. The scattering effect of ZnO was confirmed through ultraviolet-visible (UV-Vis) absorption and transient PL experiments, and a long-delayed exciton lifetime was observed in the optimized mixture dispersion thin film. The morphology of the fabricated film was characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). For the CsPbBr3-ZnO mixture (1:0.0015) film, crystal domains of approximately 10 nm were observed using TEM. Through AFM analysis, an excellent film roughness of 4.6 nm was observed, further confirming the potential of perovskite QD/ZnO composite films as promising materials for enhanced photoconversion intensity. In future studies, applying this method to other perovskite materials and metal oxides for the optimization of photoconversion composite materials is expected to enable the fabrication of highly efficient perovskite QD/metal oxide composite films. Full article
(This article belongs to the Special Issue Progress and Prospects of Perovskite Films)
Show Figures

Figure 1

18 pages, 7023 KiB  
Article
Physico-Chemical Properties of CdTe/Glutathione Quantum Dots Obtained by Microwave Irradiation for Use in Monoclonal Antibody and Biomarker Testing
by M. A. Ruiz-Robles, Francisco J. Solís-Pomar, Gabriela Travieso Aguilar, Maykel Márquez Mijares, Raine Garrido Arteaga, Olivia Martínez Armenteros, C. D. Gutiérrez-Lazos, Eduardo G. Pérez-Tijerina and Abel Fundora Cruz
Nanomaterials 2024, 14(8), 684; https://doi.org/10.3390/nano14080684 - 16 Apr 2024
Cited by 2 | Viewed by 2177
Abstract
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application [...] Read more.
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application in monoclonal antibody and biomarker testing was achieved. Two samples (QDYellow, QDOrange, corresponding to their emission colors) were analyzed by dynamic light scattering (DLS), and their hydrodynamic sizes were 6.7 nm and 19.4 nm, respectively. Optical characterization by UV-vis absorbance spectroscopy showed excitonic peaks at 517 nm and 554 nm. Photoluminescence spectroscopy indicated that the samples have a maximum intensity emission at 570 and 606 nm, respectively, within the visible range from yellow to orange. Infrared spectroscopy showed vibrational modes corresponding to the functional groups OH-C-H, C-N, C=C, C-O, C-OH, and COOH, which allows for the formation of functionalized QDs for the manufacture of biomarkers. In addition, the hydrodynamic radius, zeta potential, and approximate molecular weight were determined by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) techniques. Size dispersion and the structure of nanoparticles was obtained by Transmission Electron Microscopy (TEM) and by X-ray diffraction. In the same way, we calculated the concentration of Cd2+ ions expressed in mg/L by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). In addition to the characterization of the nanoparticles, the labeling of murine myeloid cells was carried out with both samples of quantum dots, where it was demonstrated that quantum dots can diffuse into these cells and connect mostly with the cell nucleus. Full article
Show Figures

Figure 1

10 pages, 1979 KiB  
Article
Observation of Multi-Phonon Emission in Monolayer WS2 on Various Substrates
by Eli R. Adler, Thy Doan Mai Le, Ibrahim Boulares, Robert Boyd, Yangchen He, Daniel Rhodes, Edward Van Keuren, Paola Barbara and Sina Najmaei
Nanomaterials 2024, 14(1), 37; https://doi.org/10.3390/nano14010037 - 22 Dec 2023
Cited by 1 | Viewed by 2647
Abstract
Transition metal dichalcogenides (TMDs) have unique absorption and emission properties that stem from their large excitonic binding energies, reduced-dielectric screening, and strong spin–orbit coupling. However, the role of substrates, phonons, and material defects in the excitonic scattering processes remains elusive. In tungsten-based TMDs, [...] Read more.
Transition metal dichalcogenides (TMDs) have unique absorption and emission properties that stem from their large excitonic binding energies, reduced-dielectric screening, and strong spin–orbit coupling. However, the role of substrates, phonons, and material defects in the excitonic scattering processes remains elusive. In tungsten-based TMDs, it is known that the excitons formed from electrons in the lower-energy conduction bands are dark in nature, whereas low-energy emissions in the photoluminescence spectrum have been linked to the brightening of these transitions, either via defect scattering or via phonon scattering with first-order phonon replicas. Through temperature and incident-power-dependent studies of WS2 grown by CVD or exfoliated from high-purity bulk crystal on different substrates, we demonstrate that the strong exciton–phonon coupling yields brightening of dark transitions up to sixth-order phonon replicas. We discuss the critical role of defects in the brightening pathways of dark excitons and their phonon replicas, and we elucidate that these emissions are intrinsic to the material and independent of substrate, encapsulation, growth method, and transfer approach. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for (Opto)-Electronic Applications)
Show Figures

Figure 1

16 pages, 1358 KiB  
Article
Possibility of Exciton Bose–Einstein Condensation in CdSe Nanoplatelets
by Davit A. Baghdasaryan, Volodya A. Harutyunyan, Eduard M. Kazaryan, Hayk A. Sarkisyan, Lyudvig S. Petrosyan and Tigran V. Shahbazyan
Nanomaterials 2023, 13(19), 2734; https://doi.org/10.3390/nano13192734 - 9 Oct 2023
Cited by 1 | Viewed by 1486
Abstract
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the [...] Read more.
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the ground and the first excited states of the two-dimensional exciton center of inertia of the translational motion. The condensation temperature (Tc) increases with the width of the “gap” between the ground and the first excited levels of size quantization. It is shown that when the screening effect of free electrons and holes on bound excitons is considered, the BEC temperature of the exciton subsystem increases as compared to the case where this effect is absent. The energy spectrum of the exciton condensate in a CdSe nanoplate is calculated within the framework of the weakly nonideal Bose gas approximation, considering the specifics of two-dimensional Born scattering. Full article
Show Figures

Figure 1

13 pages, 3050 KiB  
Article
Optical Properties of Conical Quantum Dot: Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence
by Sargis P. Gavalajyan, Grigor A. Mantashian, Gor Ts. Kharatyan, Hayk A. Sarkisyan, Paytsar A. Mantashyan, Sotirios Baskoutas and David B. Hayrapetyan
Nanomaterials 2023, 13(8), 1393; https://doi.org/10.3390/nano13081393 - 18 Apr 2023
Cited by 6 | Viewed by 2851
Abstract
The current work used the effective mass approximation conjoined with the finite element method to study the exciton states in a conical GaAs quantum dot. In particular, the dependence of the exciton energy on the geometrical parameters of a conical quantum dot has [...] Read more.
The current work used the effective mass approximation conjoined with the finite element method to study the exciton states in a conical GaAs quantum dot. In particular, the dependence of the exciton energy on the geometrical parameters of a conical quantum dot has been studied. Once the one-particle eigenvalue equations have been solved, both for electrons and holes, the available information on energies and wave functions is used as input to calculate exciton energy and the effective band gap of the system. The lifetime of an exciton in a conical quantum dot has been estimated and shown to be in the range of nanoseconds. In addition, exciton-related Raman scattering, interband light absorption and photoluminescence in conical GaAs quantum dots have been calculated. It has been shown that with a decrease in the size of the quantum dot, the absorption peak has a blue shift, which is more pronounced for quantum dots of smaller sizes. Furthermore, the interband optical absorption and photoluminescence spectra have been revealed for different sizes of GaAs quantum dot. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

14 pages, 2424 KiB  
Article
Excitonic Mechanisms of Stimulated Emission in Low-Threshold ZnO Microrod Lasers with Whispering Gallery Modes
by Andrey P. Tarasov, Arsen E. Muslimov and Vladimir M. Kanevsky
Materials 2022, 15(24), 8723; https://doi.org/10.3390/ma15248723 - 7 Dec 2022
Cited by 9 | Viewed by 1555
Abstract
Whispering gallery mode (WGM) ZnO microlasers gain attention due to their high Q-factors and ability to provide low-threshold near-UV lasing. However, a detailed understanding of the optical gain mechanisms in such structures has not yet been achieved. In this work, we study [...] Read more.
Whispering gallery mode (WGM) ZnO microlasers gain attention due to their high Q-factors and ability to provide low-threshold near-UV lasing. However, a detailed understanding of the optical gain mechanisms in such structures has not yet been achieved. In this work, we study the mechanisms of stimulated emission (SE) in hexagonal ZnO microrods, demonstrating high-performance WGM lasing with thresholds down to 10–20 kW/cm2 and Q-factors up to ~3500. The observed SE with a maximum in the range of 3.11–3.17 eV at room temperature exhibits a characteristic redshift upon increasing photoexcitation intensity, which is often attributed to direct recombination in the inverted electron-hole plasma (EHP). We show that the main contribution to room-temperature SE in the microrods studied, at least for near-threshold excitation intensities, is made by inelastic exciton-electron scattering rather than EHP. The shape and perfection of crystals play an important role in the excitation of this emission. At lower temperatures, two competing gain mechanisms take place: exciton-electron scattering and two-phonon assisted exciton recombination. The latter forms emission with a maximum in the region near ~3.17 eV at room temperature without a significant spectral shift, which was observed only from weakly faceted ZnO microcrystals in this study. Full article
Show Figures

Graphical abstract

11 pages, 10016 KiB  
Article
Synthesis of Organic Semiconductor Nanoparticles with Different Conformations Using the Nanoprecipitation Method
by Nathalia A. Yoshioka, Thales A. Faraco, Hernane S. Barud, Sidney J. L. Ribeiro, Marco Cremona, Benjamin Fragneaud, Indhira O. Maciel, Welber G. Quirino and Cristiano Legnani
Polymers 2022, 14(24), 5336; https://doi.org/10.3390/polym14245336 - 7 Dec 2022
Cited by 5 | Viewed by 2798
Abstract
In recent years, nanoparticulate materials have aroused interest in the field of organic electronics due to their high versatility which increases the efficiency of devices. In this work, four different stable conformations based on the organic semiconductors P3HT and PC71BM were [...] Read more.
In recent years, nanoparticulate materials have aroused interest in the field of organic electronics due to their high versatility which increases the efficiency of devices. In this work, four different stable conformations based on the organic semiconductors P3HT and PC71BM were synthesized using the nanoprecipitation method, including blend and core-shell nanoparticles. All nanoparticles were obtained free of surfactants and in aqueous suspensions following the line of ecologically correct routes. The structural and optoelectronic properties of the nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption spectroscopy and UV-visible photoluminescence (PL). Even in aqueous media, the blend and core-shell nanoparticles exhibited a greater light absorption capacity, and these conformations proved to be effective in the process of dissociation of excitons that occurs at the P3HT donor/PC71BM acceptor interface. With all these characteristics and allied to the fact that the nanoparticles are surfactant-free aqueous suspensions, this work paves the way for the use of these colloids as a photoactive layer of organic photovoltaic devices that interface with biological systems. Full article
(This article belongs to the Special Issue Biopolymers-Based Composites for Multifunctional Applications)
Show Figures

Graphical abstract

9 pages, 1462 KiB  
Article
Effects of Thermal Annealing on Optical and Microscopic Ferromagnetic Properties in InZnP:Ag Nano-Rods
by Juwon Lee, Yoon Shon, Younghae Kwon, Ji-Hoon Kyhm, Deuk Young Kim, Joon Hyun Kang, Chang-Soo Park, Kyoung Su Lee and Eun Kyu Kim
Nanomaterials 2022, 12(23), 4200; https://doi.org/10.3390/nano12234200 - 25 Nov 2022
Viewed by 1655
Abstract
InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag [...] Read more.
InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag nano-rods was determined from transmission electron microscopy (TEM), total reflectivity and Raman scattering analyses. The downward shifts of peak position for LO and TO modes in the Raman spectrum are indicative of the production of Ag ion-induced strain during the annealing process of the InZnP:Ag nano-rod samples. The appearance of two emission peaks of both (A0 X) and (e, Ag) in the PL spectrum indicated that acceptor states by Ag diffusion are visible due to the effective incorporation of Ag-creating acceptor states. The binding energy between the acceptor and the exciton measured as a function of temperature was found to be 21.2 meV for the sample annealed at 300 °C. The noticeable MFM image contrast and the clear change in the MFM phase with the scanning distance indicate the formation of the ferromagnetic spin coupling interaction on the surface of InZnP:Ag nano-rods by Ag diffusion. This study suggests that the InZnP:Ag nano-rods should be a potential candidate for the application of spintronic devices. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

11 pages, 2510 KiB  
Article
Stimulated Emission in Vertically Aligned Hexagonal ZnO Microcrystals Synthesized by Magnetron Sputtering Method
by Andrey P. Tarasov, Arsen E. Muslimov and Vladimir M. Kanevsky
Photonics 2022, 9(11), 871; https://doi.org/10.3390/photonics9110871 - 17 Nov 2022
Cited by 7 | Viewed by 1552
Abstract
This study is devoted to the luminescence and stimulated emission properties of the ZnO hybrid structure, which is vertically aligned microcrystals with the [0001] crystallographic orientation and a pronounced hexagonal shape formed on a continuous layer of micron thickness. These microcrystals are up [...] Read more.
This study is devoted to the luminescence and stimulated emission properties of the ZnO hybrid structure, which is vertically aligned microcrystals with the [0001] crystallographic orientation and a pronounced hexagonal shape formed on a continuous layer of micron thickness. These microcrystals are up to 10 µm high and up to 8 µm in diameter and form the main part of the structure’s thickness. The structure was synthesized on the M(101¯0) plane of sapphire using the magnetron sputtering method. Luminescence of the structure, represented only by conventional near-UV and green components under low-intensity continuous photoexcitation, confirms its high structural and optical quality. Under pulsed photoexcitation with relatively high intensity, stimulated emission (SE) was observed from the structure in the near-UV region at room temperature. The threshold power density for SE was 0.1–0.2 MW/cm2. Exceeding the threshold leads to a significant increase in the emission intensity compared to the control film without [0001] microcrystals, also grown on M(101¯0) sapphire. It was assumed that the optical gain is provided by the whispering gallery modes of individual [0001] microcrystals as a result of inelastic exciton–electron scattering, at least at near-threshold excitation intensities. Full article
Show Figures

Figure 1

21 pages, 6099 KiB  
Review
Study on Localized Surface Plasmon Coupling with Many Radiators
by Zhizhong Chen, Chuhan Deng, Xin Xi, Yifan Chen, Yulong Feng, Shuang Jiang, Weihua Chen, Xiangning Kang, Qi Wang, Guoyi Zhang and Bo Shen
Nanomaterials 2021, 11(11), 3105; https://doi.org/10.3390/nano11113105 - 18 Nov 2021
Cited by 6 | Viewed by 2929
Abstract
Localized surface plasmon (LSP) coupling with many radiators are investigated. The LSP is generated by excitation of laser or electron beam on the random Ag nano particles (NPs) and arrayed ones embedded in the p-GaN of green LEDs. They couple with the excitons [...] Read more.
Localized surface plasmon (LSP) coupling with many radiators are investigated. The LSP is generated by excitation of laser or electron beam on the random Ag nano particles (NPs) and arrayed ones embedded in the p-GaN of green LEDs. They couple with the excitons or radiative recombination in the quantum well (QW) and electron beam, which enhance or suppress the luminescence of the radiators. The photoluminescence (PL) intensity of periodic Ag NPs can get as much as 4.5 times higher than that of bare LED. In addition to the periodic structure, the morphology of Ag NPs also affects the localized SP (LSP) resonance intensity and light scattering efficiency. In the finite difference time domain (FDTD) simulation, five x-polarized dipoles are approximated to five quantum wells. Considering the interaction between the five dipoles and their feedback effect on LSP, the enhancement effect of SP dipole coupling with Ag NPs is amplified and the energy dissipation is reduced. The enhancement of cathodoluminescence (CL) was also found in green LEDs with Ag NPs. The three-body model composed of two orthogonal dipoles and an Ag NP is used for 3D FDTD simulation. The LSP-QWs coupling effect is separated from the electron beam (e-beam)-LSP-QW system by linear approximation. Under the excitation of electron beam, the introduction of z-dipole greatly reduces the energy dissipation. In the cross-sectional sample, z-polarized dipoles in QWs show more coupling strength to the dipole and quadrupole modes of LSP. The perturbation theory is used to separate the LSP coupling effects to x-dipole and z-dipole. At last, the resonator and the antenna effects are discussed for LSP coupling at different positions to the Ag NP. Full article
(This article belongs to the Special Issue Nanophotonics and Integrated Optics Devices)
Show Figures

Figure 1

9 pages, 1904 KiB  
Article
Using Si/MoS2 Core-Shell Nanopillar Arrays Enhances SERS Signal
by Tsung-Shine Ko, Han-Yuan Liu, Jiann Shieh, De Shieh, Szu-Hung Chen, Yen-Lun Chen and En-Ting Lin
Nanomaterials 2021, 11(3), 733; https://doi.org/10.3390/nano11030733 - 15 Mar 2021
Cited by 13 | Viewed by 3784
Abstract
Two-dimensional layered material Molybdenum disulfide (MoS2) exhibits a flat surface without dangling bonds and is expected to be a suitable surface-enhanced Raman scattering (SERS) substrate for the detection of organic molecules. However, further fabrication of nanostructures for enhancement of SERS is [...] Read more.
Two-dimensional layered material Molybdenum disulfide (MoS2) exhibits a flat surface without dangling bonds and is expected to be a suitable surface-enhanced Raman scattering (SERS) substrate for the detection of organic molecules. However, further fabrication of nanostructures for enhancement of SERS is necessary because of the low detection efficiency of MoS2. In this paper, period-distribution Si/MoS2 core/shell nanopillar (NP) arrays were fabricated for SERS. The MoS2 thin films were formed on the surface of Si NPs by sulfurizing the MoO3 thin films coated on the Si NP arrays. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were performed to characterize Si/MoS2 core-shell nanostructure. In comparison with a bare Si substrate and MoS2 thin film, the use of Si/MoS2 core-shell NP arrays as SERS substrates enhances the intensity of each SERS signal peak for Rhodamine 6G (R6G) molecules, and especially exhibits about 75-fold and 7-fold enhancements in the 1361 cm−1 peak signal, respectively. We suggest that the Si/MoS2 core-shell NP arrays with larger area could absorb more R6G molecules and provide larger interfaces between MoS2 and R6G molecules, leading to higher opportunity of charge transfer process and exciton transitions. Therefore, the Si/MoS2 core/shell NP arrays could effectively enhance SERS signal and serve as excellent SERS substrates in biomedical detection. Full article
(This article belongs to the Special Issue Nanomaterials and Nanostructures for Biology)
Show Figures

Figure 1

16 pages, 2953 KiB  
Article
Controlling J-Aggregates Formation and Chirality Induction through Demetallation of a Zinc(II) Water Soluble Porphyrin
by Ilaria Giuseppina Occhiuto, Maria Angela Castriciano, Mariachiara Trapani, Roberto Zagami, Andrea Romeo, Robert F. Pasternack and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2020, 21(11), 4001; https://doi.org/10.3390/ijms21114001 - 3 Jun 2020
Cited by 24 | Viewed by 3838
Abstract
Under acidic conditions and at high ionic strength, the zinc cation is removed from its metal complex with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) thus leading to the diacid free porphyrin, that subsequently self-organize into J-aggregates. The kinetics of the demetallation step and the successive [...] Read more.
Under acidic conditions and at high ionic strength, the zinc cation is removed from its metal complex with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) thus leading to the diacid free porphyrin, that subsequently self-organize into J-aggregates. The kinetics of the demetallation step and the successive supramolecular assembly formation have been investigated as a function of pH and ionic strength (controlled by adding ZnSO4). The demetallation kinetics obey to a rate law that is first order in [ZnTPPS4] and second order in [H+], according to literature, with k2 = 5.5 ± 0.4 M−2 s−1 at 298 K (IS = 0.6 M, ZnSO4). The aggregation process has been modeled according to an autocatalytic growth, where after the formation of a starting seed containing m porphyrin units, the rate evolves as a power of time. A complete analysis of the extinction time traces at various wavelengths allows extraction of the relevant kinetic parameters, showing that a trimer or tetramer should be involved in the rate-determining step of the aggregation. The extinction spectra of the J-aggregates evidence quite broad bands, suggesting an electronic coupling mechanism different to the usual Frenkel exciton coupling. Resonance light scattering intensity in the aggregated samples increases with increasing both [H+] and [ZnSO4]. Symmetry breaking occurs in these samples and the J-aggregates show circular dichroism spectra with unusual bands. The asymmetry g-factor decreases in its absolute value with increasing the catalytic rate kc, nulling and eventually switching the Cotton effect from negative to positive. Some inferences on the role exerted by zinc cations on the kinetics and structural features of these nanostructures have been discussed. Full article
(This article belongs to the Special Issue Advances in the Chemistry of Porphyrins and Related Macrocycles)
Show Figures

Graphical abstract

10 pages, 397 KiB  
Article
A Unified Pervasive Linebroadening Function for Quantum Wells in Light Emitting Diodes
by Juha Viljanen
Appl. Sci. 2020, 10(11), 3774; https://doi.org/10.3390/app10113774 - 29 May 2020
Cited by 2 | Viewed by 2357
Abstract
The broadening functions for quantum wells in LEDs and laser diodes below the lasing threshold are examined. Inhomogeneous and homogeneous broadening mechanisms are included. Hydrogen-atom-like exciton and the electron-hole plasma recombination models are considered. Material disorder and the Urbach tail are reviewed as [...] Read more.
The broadening functions for quantum wells in LEDs and laser diodes below the lasing threshold are examined. Inhomogeneous and homogeneous broadening mechanisms are included. Hydrogen-atom-like exciton and the electron-hole plasma recombination models are considered. Material disorder and the Urbach tail are reviewed as the main reasons for the inhomogeneous broadening. Charge carrier scattering and relaxation times in the conduction and valence bands are examined as the origin for the homogeneous lifetime broadening. Two homogeneous lineshapes are compared using the momentum relaxation times obtained from the electron and hole mobilities available for GaAs. In addition to crystal disorder, the mutual collision of charge carriers in the quantum wells is examined as the reason for the relaxation time shortening. The analogy to pressure broadening in gases is used to combine the proper homogeneous and inhomogeneous broadening functions to a unified quantum well lineshape. Full article
(This article belongs to the Special Issue Novel and Efficient Semiconductor-based Light Sources)
Show Figures

Figure 1

14 pages, 3305 KiB  
Article
Resonance Raman Spectroscopy of Mn-Mgk Cation Complexes in GaN
by Andrii Nikolenko, Viktor Strelchuk, Bogdan Tsykaniuk, Dmytro Kysylychyn, Giulia Capuzzo and Alberta Bonanni
Crystals 2019, 9(5), 235; https://doi.org/10.3390/cryst9050235 - 4 May 2019
Cited by 6 | Viewed by 5860
Abstract
Resonance Raman analysis is performed in order to gain insight into the nature of impurity-induced Raman features in GaN:(Mn,Mg) hosting Mn-Mgk cation complexes and representing a prospective strategic material for the realization of full-nitride photonic devices emitting in the infra-red. It is [...] Read more.
Resonance Raman analysis is performed in order to gain insight into the nature of impurity-induced Raman features in GaN:(Mn,Mg) hosting Mn-Mgk cation complexes and representing a prospective strategic material for the realization of full-nitride photonic devices emitting in the infra-red. It is found that in contrast to the case of GaN:Mn, the resonance enhancement of Mn-induced modes at sub-band excitation in Mg co-doped samples is not observed at an excitation of 2.4 eV, but shifts to lower energies, an effect explained by a resonance process involving photoionization of a hole from the donor level of Mn to the valence band of GaN. Selective excitation within the resonance Raman conditions allows the structure of the main Mn-induced phonon band at ~670 cm−1 to be resolved into two distinct components, whose relative intensity varies with the Mg/Mn ratio and correlates with the concentration of different Mn-Mgk cation complexes. Moreover, from the relative intensity of the 2LO and 1LO Raman resonances at inter-band excitation energy, the Huang-Rhys parameter has been estimated and, consequently, the strength of the electron-phonon interaction, which is found to increase linearly with the Mg/Mn ratio. Selective temperature-dependent enhancement of the high-order multiphonon peaks is due to variation in resonance conditions of exciton-mediated outgoing resonance Raman scattering by detuning the band gap. Full article
(This article belongs to the Special Issue Raman Spectroscopy of Crystals)
Show Figures

Figure 1

Back to TopTop