Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = error index of total area (ETA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8625 KiB  
Article
Effects of Atmospheric Correction and Image Enhancement on Effective Plastic Greenhouse Segments Based on a Semi-Automatic Extraction Method
by Yao Yao and Shixin Wang
ISPRS Int. J. Geo-Inf. 2022, 11(12), 585; https://doi.org/10.3390/ijgi11120585 - 23 Nov 2022
Cited by 2 | Viewed by 2296
Abstract
To improve the multi-resolution segmentation (MRS) quality of plastic greenhouses (PGs) in GaoFen-2 (GF-2) images, the effects of atmospheric correction and image enhancement on effective PG segments (EPGSs) were evaluated. A new semi-automatic method was also proposed to extract EPGSs in an accurate [...] Read more.
To improve the multi-resolution segmentation (MRS) quality of plastic greenhouses (PGs) in GaoFen-2 (GF-2) images, the effects of atmospheric correction and image enhancement on effective PG segments (EPGSs) were evaluated. A new semi-automatic method was also proposed to extract EPGSs in an accurate and efficient way. Firstly, GF-2 images were preprocessed via atmospheric correction, orthographical correction, registration, fusion, linear compression, or spatial filtering, and, then, boundary-removed point samples with adjustable density were made based on reference polygons by taking advantage of the characteristics of chessboard segmentation. Subsequently, the point samples were used to quickly and accurately extract segments containing 70% or greater of PG pixels in each MRS result. Finally, the extracted EPGSs were compared and analyzed via intersection over union (IoU), over-segmentation index (OSI), under-segmentation index (USI), error index of total area (ETA), and composite error index (CEI). The experimental results show that, along with the change in control variables, the optimal scale parameter, time of segmentation, IoU, OSI, USI, and CEI all showed strong changing trends, with the values of ETA all close to 0. Furthermore, compared with the control group, all the CEIs of the EPGSs extracted from those corrected and enhanced images resulted in lower values, and an optimal CEI involved linearly compressing the DN value of the atmospheric-corrected fusion image to 0–255, and then using Fast Fourier Transform and a circular low-pass filter with a radius of 800 pixels to filter from the spatial frequency domain; in this case, the CEI had a minimum value of 0.159. The results of this study indicate that the 70% design in the experiment is a reasonable pixel ratio to determine the EPGSs, and the OSI-USI-ETA-CEI pattern can be more effective than IoU when it is needed to evaluate the quality of EPGSs. Moreover, taking into consideration heterogeneity and target characteristics, atmospheric correction and image enhancement prior to MRS can improve the quality of EPGSs. Full article
(This article belongs to the Special Issue Geomatics in Forestry and Agriculture: New Advances and Perspectives)
Show Figures

Figure 1

21 pages, 35070 KiB  
Article
Evaluating the Effects of Image Texture Analysis on Plastic Greenhouse Segments via Recognition of the OSI-USI-ETA-CEI Pattern
by Yao Yao and Shixin Wang
Remote Sens. 2019, 11(3), 231; https://doi.org/10.3390/rs11030231 - 23 Jan 2019
Cited by 9 | Viewed by 4813
Abstract
Compared to multispectral or panchromatic bands, fusion imagery contains both the spectral content of the former and the spatial resolution of the latter. Even though the Estimation of Scale Parameter (ESP), the ESP 2 tool, and some segmentation evaluation methods have been introduced [...] Read more.
Compared to multispectral or panchromatic bands, fusion imagery contains both the spectral content of the former and the spatial resolution of the latter. Even though the Estimation of Scale Parameter (ESP), the ESP 2 tool, and some segmentation evaluation methods have been introduced to simplify the choice of scale parameter (SP), shape, and compactness, many challenges remain, including obtaining the natural border of plastic greenhouses (PGs) from a GaoFen-2 (GF-2) fusion imagery, accelerating the progress of follow-up texture analysis, and accurately evaluating over-segmentation and under-segmentation of PG segments in geographic object-based image analysis. Considering the features of high-resolution images, the heterogeneity of fusion imagery was compressed using texture analysis before calculating the optimal scale parameter in ESP 2 in this study. As a result, we quantified the effects of image texture analysis, including increasing averaging operator size (AOS) and decreasing greyscale quantization level (GQL) on PG segments via recognition of a proposed Over-Segmentation Index (OSI)-Under-Segmentation Index (USI)-Error Index of Total Area (ETA)-Composite Error Index (CEI) pattern. The proposed pattern can be used to reasonably evaluate the quality of PG segments obtained from GF-2 fusion imagery and its derivative images, showing that appropriate texture analysis can effectively change the heterogeneity of a fusion image for better segmentation. The optimum setup of GQL and AOS are determined by comparing CEI and visual analysis. Full article
Show Figures

Graphical abstract

Back to TopTop