Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = ergot alkaloid mycotoxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1243 KiB  
Article
Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize
by Sara Astolfi, Francesca Buiarelli, Francesca Debegnach, Barbara De Santis, Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi and Giulia Simonetti
Foods 2025, 14(15), 2623; https://doi.org/10.3390/foods14152623 - 26 Jul 2025
Viewed by 187
Abstract
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well [...] Read more.
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well studied, emerging mycotoxins remain underexplored and insufficiently investigated. Among these, moniliformin (MON) is frequently detected in maize-based food and feed; however, the absence of regulatory limits and standardized detection methods limits effective monitoring and comprehensive risk assessment. The European Food Safety Authority highlights insufficient occurrence and toxicological data as challenges to regulatory development. This study compares three analytical methods—CE-DAD, HPLC-DAD, and HPLC-MS/MS—for moniliformin detection and quantification in maize, evaluating linear range, correlation coefficients, detection and quantification limits, accuracy, and precision. Results show that CE-DAD and HPLC-MS/MS provide reliable and comparable sensitivity and selectivity, while HPLC-DAD is less sensitive. Application to real samples enabled deterministic dietary exposure estimation based on consumption, supporting preliminary risk characterization. This research provides a critical comparison that supports the advancement of improved monitoring and risk assessment frameworks, representing a key step toward innovating the detection of under-monitored mycotoxins and laying the groundwork for future regulatory and preventive measures targeting MON. Full article
(This article belongs to the Special Issue Recent Advances in the Detection of Food Contaminants and Pollutants)
Show Figures

Figure 1

23 pages, 3679 KiB  
Article
Impact of Low-Level Ergot Alkaloids and Endophyte Presence in Tall Fescue Grass on the Metabolome and Microbiome of Fall-Grazing Steers
by Ignacio M. Llada, Jeferson M. Lourenco, Madison M. Dycus, Jessica M. Carpenter, Zachery R. Jarrell, Dean P. Jones, Garret Suen, Nicholas S. Hill and Nikolay M. Filipov
Toxins 2025, 17(5), 251; https://doi.org/10.3390/toxins17050251 - 17 May 2025
Viewed by 666
Abstract
Fescue toxicosis (FT) is a mycotoxin-related disease caused by the ingestion of tall fescue, naturally infected with the ergot alkaloid (EA)-producing endophyte Epichloë coenophiala. Some grazing on endophyte-free (E−) or non-toxic (NT), commercial endophyte-infected pastures takes place in the US as well. [...] Read more.
Fescue toxicosis (FT) is a mycotoxin-related disease caused by the ingestion of tall fescue, naturally infected with the ergot alkaloid (EA)-producing endophyte Epichloë coenophiala. Some grazing on endophyte-free (E−) or non-toxic (NT), commercial endophyte-infected pastures takes place in the US as well. Earlier, we found that grazing on toxic fescue with low levels of EAs during fall affects thermoregulation, behavior, and weight gain. Building on these findings, the current study aimed to investigate how the presence of low EA-producing E+ or NT endophytes can influence animal metabolome, microbiome, and, ultimately, overall animal health. Eighteen Angus steers were placed on NT, E+, and E− fescue pastures for 28 days. Urine, rumen fluid (RF), rumen solid (RS), and feces were collected pre-exposure, and on days 2, 7, 14, 21, and 28. An untargeted high-resolution metabolomics approach was used to analyze urine and RF, while 16S rRNA-based next-generation sequencing (NGS) was used to examine RF, RS, feces, and fescue plant microbiomes. While alpha- or beta-microbiota diversity across all analyzed matrices were unaffected, there were specific effects of E+ on the relative abundance of some taxa (i.e., Prevotellaceae). Additionally, E+ grazing impacted aromatic amino acid metabolism in the urine and the metabolism of lipids in both the RF and urine. In both matrices, trace amine-related metabolic features differed markedly between E+ and the other groups. Compared to the endophyte-free group, endophyte presence, whether novel or toxic, influenced amino acid and carbohydrate metabolism, as well as unsaturated fatty acid biosynthesis. These findings suggest that low-EA-producing and non-toxic endophytes in fescue have more prominent effects on the metabolome than the microbiome, and this metabolome perturbation might be associated with decreased performance and reported physiological signs of FT. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 1294 KiB  
Article
Optimization, Validation, and Application of Cleanup-Coupled Liquid Chromatography–Tandem Mass Spectrometry for the Simultaneous Analyses of 35 Mycotoxins and Their Derivatives in Cereals
by Dan-Bi Kim, Miso Nam, Yong-Suk Kim and Min-Sun Kim
Foods 2024, 13(22), 3617; https://doi.org/10.3390/foods13223617 - 13 Nov 2024
Viewed by 1411
Abstract
Mycotoxins occur singly or as co-contaminants and are primarily present in carbohydrate-rich foods such as cereals and cereal-based products. To effectively monitor mycotoxin co-contamination in cereals and cereal-based products, the simultaneous analysis of mycotoxins and their derivatives is required. Therefore, we coupled cleanup [...] Read more.
Mycotoxins occur singly or as co-contaminants and are primarily present in carbohydrate-rich foods such as cereals and cereal-based products. To effectively monitor mycotoxin co-contamination in cereals and cereal-based products, the simultaneous analysis of mycotoxins and their derivatives is required. Therefore, we coupled cleanup with LC-MS/MS for the rapid and robust quantitation of 35 analytes in wheat samples, including ergot alkaloids (EAs), which are rarely included in such analyses. To investigate the effects of different mycotoxin types on adsorbents, various dispersive solid-phase extraction sorbents were evaluated; a C18 end-capped sorbent exhibited the most effective cleanup performance. The method was validated by analyzing samples fortified with the mycotoxins at three concentration levels. The results exhibited high linearity, high recoveries, and repeatability. The methodology was applied for commercial cereal samples. The cereal samples were found to be 74% contaminated, and two samples measured levels of EAs at 609.63 μg/kg and 294.93 μg/kg, exceeding the limits defined by the EU for rye milling products. These findings highlight the validity of our novel method and the necessity of continuously monitoring mycotoxin levels in cereals to ensure food safety. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 4097 KiB  
Article
Climate Effects on Ergot and Ergot Alkaloids Occurrence in Italian Wheat
by Mariantonietta Peloso, Gaetan Minkoumba Sonfack, Ilaria Prizio, Eleonora Baraldini Molgora, Guido Pedretti, Giorgio Fedrizzi and Elisabetta Caprai
Foods 2024, 13(12), 1907; https://doi.org/10.3390/foods13121907 - 17 Jun 2024
Cited by 1 | Viewed by 2115
Abstract
In recent years, there has been an intensification of weather variability worldwide as a result of climate change. Some regions have been affected by drought, while others have experienced more intense rainfall. The incidence and severity of moldy grain and mycotoxin contamination during [...] Read more.
In recent years, there has been an intensification of weather variability worldwide as a result of climate change. Some regions have been affected by drought, while others have experienced more intense rainfall. The incidence and severity of moldy grain and mycotoxin contamination during the growing and harvesting seasons have increased as a result of these weather conditions. Additionally, torrential rains and wet conditions may cause delays in grain drying, leading to mold growth in the field. In July 2023, a wheat field in Lecco (Lombardy, Italy) was affected by torrential rains that led to the development of the Claviceps fungi. In the field, dark sclerotia were identified on some ears. Wheat ears, kernels, and sclerotia were collected and analyzed by LC-MS/MS at IZSLER, Food Chemical Department, in Bologna. The wheat ears, kernels, and sclerotia were analyzed for 12 ergot alkaloids (EAs) according to (EU) Regulation 2023/915 (ergocornine/ergocorninine; ergocristine/ergocristinine; ergocryptine/ergocryptinine; ergometrine/ergometrinine; ergosine/ergosinine; ergotamine/ergotaminine), after QuEChERS (Z-Sep/C18) purification. The analyzed sclerotia showed significant differences in total alkaloid content that vary between 0.01 and 0.5% (w/w), according to the results of the 2017 EFSA scientific report. EAs detected in sclerotia were up to 4951 mg/kg, in wheat ears up to 33 mg/kg, and in kernels were 1 mg/kg. Additional mycotoxins, including ochratoxin A, deoxynivalenol, zearalenone, fumonisins, T2-HT2 toxins, and aflatoxins, were investigated in wheat kernels after purification with immunoaffinity columns (IAC). The analysis revealed the presence of deoxynivalenol in wheat kernels at a concentration of 2251 µg/kg. It is expected that climate change will increase the frequency of extreme weather events. In order to mitigate the potential risks associated with mycotoxin-producing fungi and to ensure the protection of human health, it is suggested that official controls be implemented in the field. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

12 pages, 1299 KiB  
Article
First Synthesis of Ergotamine-13CD3 and Ergotaminine-13CD3 from Unlabeled Ergotamine
by Sven-Oliver Herter, Hajo Haase and Matthias Koch
Toxins 2024, 16(4), 199; https://doi.org/10.3390/toxins16040199 - 20 Apr 2024
Cited by 3 | Viewed by 2381
Abstract
Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the [...] Read more.
Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the six most common EAs (so-called priority EAs) and their corresponding epimers are quantified using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quantification of EAs in complex food matrices without appropriate internal standards is challenging but currently carried out in the standard method EN 17425:2021 due to their commercial unavailability. To address the need for isotopically labeled EAs, we focus on two semi-synthetic approaches for the synthesis of these reference standards. Therefore, we investigate the feasibility of the N6-demethylation of native ergotamine to yield norergotamine, which can subsequently be remethylated with an isotopically labeled methylating reagent, such as iodomethane (13CD3-I), to yield isotopically labeled ergotamine and its C8-epimer ergotaminine. Testing the isotopically labeled ergotamine/-inine against native ergotamine/-inine with HPLC coupled to high-resolution HR-MS/MS proved the structure of ergotamine-13CD3 and ergotaminine-13CD3. Thus, for the first time, we can describe their synthesis from unlabeled, native ergotamine. Furthermore, this approach is promising as a universal way to synthesize other isotopically labeled EAs. Full article
(This article belongs to the Special Issue Detection, Control and Contamination of Mycotoxins (Volume II))
Show Figures

Graphical abstract

25 pages, 1353 KiB  
Review
Ergot Alkaloids on Cereals and Seeds: Analytical Methods, Occurrence, and Future Perspectives
by Ângela Silva, Ana Rita Soares Mateus, Sílvia Cruz Barros and Ana Sanches Silva
Molecules 2023, 28(20), 7233; https://doi.org/10.3390/molecules28207233 - 23 Oct 2023
Cited by 9 | Viewed by 4221
Abstract
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, [...] Read more.
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, the presence of ergot alkaloids in food presents a concern for human safety. For this reason, it is essential to develop several analytical methods that allow the detection of these toxic compounds. This review compiles and discusses the most relevant studies and methods used in the detection and quantification of ergot alkaloids. Moreover, the decontamination techniques are also addressed, with special attention to sorting, cleaning, frying, baking, peeling, and ammonization methods, as they are the only ones already applied to ergot alkaloids. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Natural Products Chemistry 2.0)
Show Figures

Figure 1

14 pages, 3006 KiB  
Article
Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method
by Maximilian Kuner, Jan Lisec, Tatjana Mauch, Jörg Konetzki, Hajo Haase and Matthias Koch
Molecules 2023, 28(9), 3701; https://doi.org/10.3390/molecules28093701 - 25 Apr 2023
Cited by 2 | Viewed by 2841
Abstract
Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric [...] Read more.
Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. Full article
Show Figures

Graphical abstract

26 pages, 3854 KiB  
Article
Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico
by Felipe Penagos-Tabares, Michael Sulyok, Juan-Ignacio Artavia, Samanta-Irais Flores-Quiroz, César Garzón-Pérez, Ezequías Castillo-Lopez, Luis Zavala, Juan-David Orozco, Johannes Faas, Rudolf Krska and Qendrim Zebeli
Toxins 2023, 15(2), 153; https://doi.org/10.3390/toxins15020153 - 13 Feb 2023
Cited by 11 | Viewed by 3581 | Correction
Abstract
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites [...] Read more.
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization–tandem mass spectrometric (LC/ESI–MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively. Full article
(This article belongs to the Special Issue Detection, Control and Contamination of Mycotoxins (Volume II))
Show Figures

Figure 1

16 pages, 1843 KiB  
Article
Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin
by Ádám Tölgyesi, Attila Cseh, Andrea Simon and Virender K. Sharma
Molecules 2023, 28(3), 1468; https://doi.org/10.3390/molecules28031468 - 2 Feb 2023
Cited by 9 | Viewed by 3625
Abstract
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups [...] Read more.
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples. Full article
(This article belongs to the Special Issue Chromatographic Analysis of Pesticide in Environmental and Food)
Show Figures

Figure 1

14 pages, 324 KiB  
Article
Effects of Heating, Pelleting, and Feed Matrix on Apparent Concentrations of Cereal Ergot Alkaloids in Relation to Growth Performance and Welfare Parameters of Backgrounding Beef Steers
by Kim Stanford, Karen S. Schwartzkopf-Genswein, Daniela M. Meléndez, Skyler Ngo, Michael Harding, Tim A. McAllister, Dian Schatzmayr, Mary Lou Swift, Barry Blakley and Gabriel O. Ribeiro
Toxins 2022, 14(9), 580; https://doi.org/10.3390/toxins14090580 - 24 Aug 2022
Cited by 6 | Viewed by 2159
Abstract
As the contamination of cereal grains with ergot has been increasing in Western Canada, studies were undertaken to evaluate the impacts of heating (60, 80, 120, or 190 °C) alone or in combination with pelleting on concentrations of ergot alkaloids. Fifteen samples of [...] Read more.
As the contamination of cereal grains with ergot has been increasing in Western Canada, studies were undertaken to evaluate the impacts of heating (60, 80, 120, or 190 °C) alone or in combination with pelleting on concentrations of ergot alkaloids. Fifteen samples of ergot-contaminated grain from Alberta and Saskatchewan were assayed for R and S epimers of six alkaloids (ergocryptine, ergocristine, ergocornine, ergometrine, ergosine, and ergotamine) using HPLC MS/MS. Five samples with distinct alkaloid profiles were then selected for heating and pelleting studies. Heating resulted in a linear increase (p < 0.05) of total R and total S epimers with increasing temperature, although some individual R epimers were stable (ergometrine, ergosine, ergotamine). Pelleting also increased (p < 0.05) concentrations of total R and total S epimers detected, although ergometrine concentration decreased (p < 0.05) after pelleting. A feeding study arranged in a 2 × 2 factorial structure used 48 backgrounding Angus-cross steers fed four different diets: (1) Control Mash (CM, no added ergot), (2) Control Pellet (CP), (3) Ergot Mash (EM), or (4) Ergot Pellet (EP). Pelleting heated the ergot to 90–100 °C under 4 bars pressure, but the ergot used in the feeding study was not otherwise heated. Alkaloid concentrations of EM and EP varied by up to 1.1 mg/kg depending on the feed matrix assayed. No differences among treatments were noted for growth performance, feed intake, feed conversion, concentrations of serum prolactin and haptoglobin, hair cortisol, or in temperatures of extremities measured by infrared thermography. The only negative impacts of ergot alkaloids were on blood parameters indicative of reduced immune function or chronic inflammation. Pelleting did not heighten the negative clinical outcomes of ergot, although alkaloid concentrations of pelleted feed increased depending on the matrix assayed. It was hypothesized that the heat and pressure associated with pelleting may enhance the recovery of alkaloids from pelleted feed. Full article
(This article belongs to the Section Mycotoxins)
32 pages, 4441 KiB  
Article
Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors
by Felipe Penagos-Tabares, Ratchaneewan Khiaosa-ard, Marlene Schmidt, Eva-Maria Bartl, Johanna Kehrer, Veronika Nagl, Johannes Faas, Michael Sulyok, Rudolf Krska and Qendrim Zebeli
Toxins 2022, 14(7), 493; https://doi.org/10.3390/toxins14070493 - 15 Jul 2022
Cited by 13 | Viewed by 4569
Abstract
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, [...] Read more.
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization–tandem mass spectrometric (LC/ESI–MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feed: Detection and Identification)
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
In-House Validation of an Efficient and Rapid Procedure for the Simultaneous Determination and Monitoring of 23 Mycotoxins in Grains in Korea
by Hyoyoung Kim, Eun Joo Baek, Byeung Gon Shin, Ho Jin Kim and Jang-Eok Kim
Toxins 2022, 14(7), 457; https://doi.org/10.3390/toxins14070457 - 2 Jul 2022
Cited by 9 | Viewed by 2263
Abstract
A high-performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of mycotoxins, including Ergot alkaloids (EAs), in 3 types of grains. The extraction of 23 mycotoxins was evaluated and performed by using a modified QuEChERS-based sample preparation procedure. The [...] Read more.
A high-performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of mycotoxins, including Ergot alkaloids (EAs), in 3 types of grains. The extraction of 23 mycotoxins was evaluated and performed by using a modified QuEChERS-based sample preparation procedure. The proposed method was fully validated on spiked grain samples (barley, wheat and oat) to assess the linearity, limit of detection (LOD) and limit of quantitation (LOQ), matrix effects, precision and recovery. After validation, this method was applied to 143 samples of various types of 3 grains from the Republic of Korea to survey the level of mycotoxin contamination in Republic of Korean grains. A total of 42 grain samples (29%) were contaminated with at least one of these mycotoxins at levels higher than the LOQ. The results demonstrated that the procedure was suitable for simultaneously determining these mycotoxins in cereals and could be performed for their routine analysis in mycotoxin laboratories. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

11 pages, 1310 KiB  
Article
Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo
by Eriton E. L. Valente, David L. Harmon and James L. Klotz
Toxins 2022, 14(1), 9; https://doi.org/10.3390/toxins14010009 - 23 Dec 2021
Cited by 7 | Viewed by 3116
Abstract
Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate [...] Read more.
Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate the effects of 24 h exposure to 5-HT and ergot alkaloids (ergovaline, ERV), two assays were conducted. The first assay determined the half-maximal inhibitory concentration (IC50) following the 24 h pre-exposure period, while the second assay evaluated the effect of IC50 concentrations of 5-HT and ERV either individually or in combination. There was an interaction between previous exposure to 5-HT and ERV. Previous exposure to 5-HT at the IC50 concentration of 7.57 × 10−7 M reduced the contractile response by more than 50% of control, while the exposure to ERV at IC50 dose of 1.57 × 10−10 M tended to decrease (p = 0.081) vessel contractility with a response higher than 50% of control. The 24 h previous exposure to both 5-HT and ERV did not potentiate the inhibitory response of blood vessels in comparison with incubation with each compound alone. These results suggest receptor competition between 5-HT and ERV. More studies are necessary to determine the potential of 5-HT to treat toxicosis caused by ergot alkaloids. Full article
(This article belongs to the Special Issue Global Impact of Ergot Alkaloids)
Show Figures

Figure 1

19 pages, 2856 KiB  
Article
Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia
by Carmen Hicks, Thomas E. Witte, Amanda Sproule, Tiah Lee, Parivash Shoukouhi, Zlatko Popovic, Jim G. Menzies, Christopher N. Boddy, Miao Liu and David P. Overy
Toxins 2021, 13(12), 861; https://doi.org/10.3390/toxins13120861 - 2 Dec 2021
Cited by 14 | Viewed by 5291
Abstract
Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from [...] Read more.
Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from four different grain crops separated the C. purpurea strains into two distinct metabolomic classes based on ergot alkaloid content. Variances in C. purpurea alkaloid profiles were correlated to genetic differences within the lpsA gene of the ergot alkaloid biosynthetic gene cluster from previously published genomes and from newly sequenced, long-read genome assemblies of Canadian strains. Based on gene cluster composition and unique polymorphisms, we hypothesize that the alkaloid content of C. purpurea sclerotia is currently undergoing adaptation. The patterns of lpsA gene diversity described in this small subset of Canadian strains provides a remarkable framework for understanding accelerated evolution of ergot alkaloid production in Claviceps purpurea. Full article
(This article belongs to the Special Issue Global Impact of Ergot Alkaloids)
Show Figures

Figure 1

14 pages, 823 KiB  
Article
Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method
by Aristeidis S. Tsagkaris, Nela Prusova, Zbynek Dzuman, Jana Pulkrabova and Jana Hajslova
Toxins 2021, 13(11), 783; https://doi.org/10.3390/toxins13110783 - 5 Nov 2021
Cited by 16 | Viewed by 3800
Abstract
Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods [...] Read more.
Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68–104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis. Full article
Show Figures

Figure 1

Back to TopTop