Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = episodic broadcast transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5045 KiB  
Article
Monitoring Breathing and Heart Rate Using Episodic Broadcast Data Transmission
by Paweł Janik, Małgorzata A. Janik and Michał Pielka
Sensors 2022, 22(16), 6019; https://doi.org/10.3390/s22166019 - 12 Aug 2022
Cited by 5 | Viewed by 3147
Abstract
The paper presents a wearable sensor for breath and pulse monitoring using an inertial sensor and episodic broadcast radio transmission. The data transmission control algorithm applied allows for the transmission of additional information using the standard PDU format and, at the same time, [...] Read more.
The paper presents a wearable sensor for breath and pulse monitoring using an inertial sensor and episodic broadcast radio transmission. The data transmission control algorithm applied allows for the transmission of additional information using the standard PDU format and, at the same time, goes beyond the Bluetooth teletransmission standard (BLE). The episodic broadcast transmission makes it possible to receive information from sensors without the need to create a dedicated radio link or a defined network structure. The radio transmission controlled by the occurrence of a specific event in the monitored signal is combined with the reference wire transmission. The signals from two different types of sensors and the simulated ECG signal are used to control the BLE transmission. The presented results of laboratory tests indicate the effectiveness of episodic data transmission in the BLE standard. The conducted analysis showed that the mean difference in pulse detection using the episodic transmission compared to the wire transmission is 0.038 s, which is about 4% of the mean duration of a single cycle, assuming that the average adult human pulse is 60 BPM. Full article
Show Figures

Figure 1

17 pages, 2860 KiB  
Article
Spike-Dependent Dynamic Partitioning of the Locus Coeruleus Network through Noradrenergic Volume Release in a Simulation of the Nucleus Core
by Shristi Baral, Hassan Hosseini, Kaushik More, Thomaz M. C. Fabrin, Jochen Braun and Matthias Prigge
Brain Sci. 2022, 12(6), 728; https://doi.org/10.3390/brainsci12060728 - 1 Jun 2022
Viewed by 3443
Abstract
The Locus coeruleus (LC) modulates various neuronal circuits throughout the brain. Its unique architectural organization encompasses a net of axonal innervation that spans the entire brain, while its somatic core is highly compact. Recent research revealed an unexpected cellular input specificity within the [...] Read more.
The Locus coeruleus (LC) modulates various neuronal circuits throughout the brain. Its unique architectural organization encompasses a net of axonal innervation that spans the entire brain, while its somatic core is highly compact. Recent research revealed an unexpected cellular input specificity within the nucleus that can give rise to various network states that either broadcast norepinephrine signals throughout the brain or pointedly modulate specific brain areas. Such adaptive input–output functions likely surpass our existing network models that build upon a given synaptic wiring configuration between neurons. As the distances between noradrenergic neurons in the core of the LC are unusually small, neighboring neurons could theoretically impact each other via volume transmission of NE. We therefore set out to investigate if such interaction could be mediated through noradrenergic alpha2-receptors in a spiking neuron model of the LC. We validated our model of LC neurons through comparison with experimental patch-clamp data and identified key variables that impact alpha2-mediated inhibition of neighboring LC neurons. Our simulation confirmed a reliable autoinhibition of LC neurons after episodes of high neuronal activity that continue even after neuronal activity subsided. Additionally, dendro-somatic synapses inhibited spontaneous spiking in the somatic compartment of connected neurons in our model. We determined the exact position of hundreds of LC neurons in the mouse brain stem via a tissue clearing approach and, based on this, further determined that 25 percent of noradrenergic neurons have a neighboring LC neuron within less than a 25-micrometer radius. By modeling NE diffusion, we estimated that more than 15 percent of the alpha2-adrenergic receptors fraction can bind NE within such a diffusion radius. Our spiking neuron model of LC neurons predicts that repeated or long-lasting episodes of high neuronal activity induce partitioning of the gross LC network and reduce the spike rate in neighboring neurons at distances smaller than 25 μm. As these volume-mediating neighboring effects are challenging to test with the current methodology, our findings can guide future experimental approaches to test this phenomenon and its physiological consequences. Full article
Show Figures

Figure 1

Back to TopTop