Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = epileptogenic nucleus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5006 KB  
Article
Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy
by Laura Zeballos, Carlos García-Peral, Martín M. Ledesma, Jerónimo Auzmendi, Alberto Lazarowski and Dolores E. López
Int. J. Mol. Sci. 2025, 26(5), 2331; https://doi.org/10.3390/ijms26052331 - 5 Mar 2025
Viewed by 1745
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and [...] Read more.
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1—Glypican-1; Sdc3—Syndecan-3; Vgf—Nerve Growth Factor Inducible; Cpne5—Copine 5; Agap2—Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8—Dipeptidyl Peptidase 8) and the downregulation of two (Ralb—RAS-like proto-oncogene B—and S100b—S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy. Full article
(This article belongs to the Special Issue Neuroproteomics: Focus on Nervous System Function and Disease)
Show Figures

Figure 1

13 pages, 2511 KB  
Article
Posttraumatic and Idiopathic Spike–Wave Discharges in Rats: Discrimination by Morphology and Thalamus Involvement
by Ilia Komoltsev, Olga Salyp, Aleksandra Volkova, Daria Bashkatova, Natalia Shirobokova, Stepan Frankevich, Daria Shalneva, Olga Kostyunina, Olesya Chizhova, Pavel Kostrukov, Margarita Novikova and Natalia Gulyaeva
Neurol. Int. 2023, 15(2), 609-621; https://doi.org/10.3390/neurolint15020038 - 27 Apr 2023
Viewed by 2660
Abstract
The possibility of epileptiform activity generation by the thalamocortical neuronal network after focal brain injuries, including traumatic brain injury (TBI), is actively debated. Presumably, posttraumatic spike–wave discharges (SWDs) involve a cortico-thalamocortical neuronal network. Differentiation of posttraumatic and idiopathic (i.e., spontaneously generated) SWDs is [...] Read more.
The possibility of epileptiform activity generation by the thalamocortical neuronal network after focal brain injuries, including traumatic brain injury (TBI), is actively debated. Presumably, posttraumatic spike–wave discharges (SWDs) involve a cortico-thalamocortical neuronal network. Differentiation of posttraumatic and idiopathic (i.e., spontaneously generated) SWDs is imperative for understanding posttraumatic epileptogenic mechanisms. Experiments were performed on male Sprague-Dawley rats with electrodes implanted into the somatosensory cortex and the thalamic ventral posterolateral nucleus. Local field potentials were recorded for 7 days before and 7 days after TBI (lateral fluid percussion injury, 2.5 atm). The morphology of 365 SWDs (89 idiopathic before craniotomy, and 262 posttraumatic that appeared only after TBI) and their appearance in the thalamus were analyzed. The occurrence of SWDs in the thalamus determined their spike–wave form and bilateral lateralization in the neocortex. Posttraumatic discharges were characterized by more “mature” characteristics as compared to spontaneously generated discharges: higher proportions of bilateral spreading, well-defined spike–wave form, and thalamus involvement. Based on SWD parameters, the etiology could be established with an accuracy of 75% (AUC 0.79). Our results support the hypothesis that the formation of posttraumatic SWDs involves a cortico-thalamocortical neuronal network. The results form a basis for further research of mechanisms associated with posttraumatic epileptiform activity and epileptogenesis. Full article
(This article belongs to the Special Issue Recent Advances in Traumatic Brain Injury)
Show Figures

Figure 1

28 pages, 3665 KB  
Article
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal
by Carlos García-Peral, Martín M. Ledesma, M. Javier Herrero-Turrión, Ricardo Gómez-Nieto, Orlando Castellano and Dolores E. López
Diagnostics 2023, 13(6), 1048; https://doi.org/10.3390/diagnostics13061048 - 9 Mar 2023
Cited by 6 | Viewed by 3159
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis [...] Read more.
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Epilepsy)
Show Figures

Figure 1

13 pages, 3588 KB  
Article
Metabolism and Intracranial Epileptogenicity in Temporal Lobe Long-Term Epilepsy-Associated Tumor
by Jiajie Mo, Jianguo Zhang, Wenhan Hu, Lin Sang, Xiaoqiu Shao, Chao Zhang and Kai Zhang
J. Clin. Med. 2022, 11(18), 5309; https://doi.org/10.3390/jcm11185309 - 9 Sep 2022
Cited by 1 | Viewed by 2530
Abstract
Brain tumors are common in epilepsy surgery and frequently occur in the temporal lobe, but the optimal surgical strategies to remove the tumor and epileptogenic zone remain controversial. We aim at illustrating the positron emission tomography (PET) metabolism and the stereoelectroencephalography (SEEG) epileptogenicity [...] Read more.
Brain tumors are common in epilepsy surgery and frequently occur in the temporal lobe, but the optimal surgical strategies to remove the tumor and epileptogenic zone remain controversial. We aim at illustrating the positron emission tomography (PET) metabolism and the stereoelectroencephalography (SEEG) epileptogenicity of temporal lobe long-term epilepsy-associated tumors (LEAT). In this study, 70 patients and 25 healthy controls were included. Our analysis leveraged group-level analysis to reveal the whole-brain metabolic pattern of temporal lobe LEATs. The SEEG-based epileptogenicity mapping was performed to verify the PET findings in the epileptic network. Compared to controls, patients with a temporal lobe LEAT showed a more widespread epileptic network based on 18FDG-PET in patients with a mesial temporal lobe LEAT than in those with a lateral temporal lobe LEAT. The significant brain clusters mainly involved the paracentral lobule (ANOVA F = 9.731, p < 0.001), caudate nucleus (ANOVA F = 20.749, p < 0.001), putamen (Kruskal–Wallis H = 19.258, p < 0.001), and thalamus (ANOVA F = 4.754, p = 0.011). Subgroup analysis and SEEG-based epileptogenicity mapping are similar to the metabolic pattern. Our findings demonstrate the metabolic and electrophysiological organization of the temporal lobe LEAT epileptic network, which may assist in a patient-specific surgical strategy. Full article
(This article belongs to the Special Issue Brain Tumors: Clinical Updates and Perspectives)
Show Figures

Figure 1

14 pages, 7382 KB  
Article
Mice Lacking Connective Tissue Growth Factor in the Forebrain Exhibit Delayed Seizure Response, Reduced C-Fos Expression and Different Microglial Phenotype Following Acute PTZ Injection
by Pei-Fen Siow, Chih-Yu Tsao, Ho-Ching Chang, Chwen-Yu Chen, I-Shing Yu, Kuang-Yung Lee and Li-Jen Lee
Int. J. Mol. Sci. 2020, 21(14), 4921; https://doi.org/10.3390/ijms21144921 - 12 Jul 2020
Cited by 11 | Viewed by 4543
Abstract
Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus [...] Read more.
Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus (DEPN) which has been recognized as an epileptogenic zone. We generated a forebrain-specific Ctgf knockout (FbCtgf KO) mouse line in which the expression of Ctgf in the DEPN is eliminated. In this study, we adopted a pentylenetetrazole (PTZ)-induced seizure model and found similar severity and latencies to death between FbCtgf KO and WT mice. Interestingly, there was a delay in the seizure reactions in the mutant mice. We further observed reduced c-fos expression subsequent to PTZ treatment in the KO mice, especially in the hippocampus. While the densities of astrocytes and microglia in the hippocampus were kept constant after acute PTZ treatment, microglial morphology was different between genotypes. Our present study demonstrated that in the FbCtgf KO mice, PTZ failed to increase neuronal activity and microglial response in the hippocampus. Our results suggested that inhibition of Ctgf function may have a therapeutic potential in preventing the pathophysiology of epilepsy. Full article
Show Figures

Figure 1

Back to TopTop