Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = environmental residual radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1078 KiB  
Article
Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission
by Elizabeth A. Klug, Danielle N. Rivera, Vicki L. Herrera, Ashley R. Ravnholdt, Daniel N. Ackerman, Yangsheng Yu, Chunyan Ye, Steven B. Bradfute, St. Patrick Reid and Joshua L. Santarpia
Pathogens 2025, 14(8), 750; https://doi.org/10.3390/pathogens14080750 - 30 Jul 2025
Viewed by 258
Abstract
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental [...] Read more.
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental transmission routes rather than a person-to-person transmission route, such as avian influenza (e.g., H5N1) and Lassa fever. Despite the lack of person-to-person transmission, these viruses cause a significant public health and economic burden. However, due to the lack of targeted pharmaceutical preventatives and therapeutics, the recommended approach to prevent SNV infections is to avoid locations that have a combination of low foot traffic, receive minimal natural sunlight, and where P. maniculatus may be found nesting. Consequently, gaining insight into the SNV bioaerosol decay profile is fundamental to the prevention of SNV infections. The Biological Aerosol Reaction Chamber (Bio-ARC) is a flow-through system designed to rapidly expose bioaerosols to environmental conditions (ozone, simulated solar radiation (SSR), humidity, and other gas phase species at stable temperatures) and determine the sensitivity of those particles to simulated ambient conditions. Using this system, we examined the bioaerosol stability of SNV. The virus was found to be susceptible to both simulated solar radiation and ozone under the tested conditions. Comparisons of decay between the virus aerosolized in residual media and in a mouse bedding matrix showed similar results. This study indicates that SNV aerosol particles are susceptible to inactivation by solar radiation and ozone, both of which could be implemented as effective control measures to prevent disease in locations where SNV is endemic. Full article
(This article belongs to the Special Issue Airborne Transmission of Pathogens)
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 500
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

33 pages, 3352 KiB  
Article
Optimization Strategy for Underwater Target Recognition Based on Multi-Domain Feature Fusion and Deep Learning
by Yanyang Lu, Lichao Ding, Ming Chen, Danping Shi, Guohao Xie, Yuxin Zhang, Hongyan Jiang and Zhe Chen
J. Mar. Sci. Eng. 2025, 13(7), 1311; https://doi.org/10.3390/jmse13071311 - 7 Jul 2025
Viewed by 399
Abstract
Underwater sonar target recognition is crucial in fields such as national defense, navigation, and environmental monitoring. However, it faces issues such as the complex characteristics of ship-radiated noise, imbalanced data distribution, non-stationarity, and bottlenecks of existing technologies. This paper proposes the MultiFuseNet-AID network, [...] Read more.
Underwater sonar target recognition is crucial in fields such as national defense, navigation, and environmental monitoring. However, it faces issues such as the complex characteristics of ship-radiated noise, imbalanced data distribution, non-stationarity, and bottlenecks of existing technologies. This paper proposes the MultiFuseNet-AID network, aiming to address these challenges. The network includes the TriFusion block module, the novel lightweight attention residual network (NLARN), the long- and short-term attention (LSTA) module, and the Mamba module. Through the TriFusion block module, the original, differential, and cumulative signals are processed in parallel, and features such as MFCC, CQT, and Fbank are fused to achieve deep multi-domain feature fusion, thereby enhancing the signal representation ability. The NLARN was optimized based on the ResNet architecture, with the SE attention mechanism embedded. Combined with the long- and short-term attention (LSTA) and the Mamba module, it could capture long-sequence dependencies with an O(N) complexity, completing the optimization of lightweight long sequence modeling. At the same time, with the help of feature fusion, and layer normalization and residual connections of the Mamba module, the adaptability of the model in complex scenarios with imbalanced data and strong noise was enhanced. On the DeepShip and ShipsEar datasets, the recognition rates of this model reached 98.39% and 99.77%, respectively. The number of parameters and the number of floating point operations were significantly lower than those of classical models, and it showed good stability and generalization ability under different sample label ratios. The research shows that the MultiFuseNet-AID network effectively broke through the bottlenecks of existing technologies. However, there is still room for improvement in terms of adaptability to extreme underwater environments, training efficiency, and adaptability to ultra-small devices. It provides a new direction for the development of underwater sonar target recognition technology. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 15870 KiB  
Article
Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023
by Chengchi Zhang, Yuexin Zhang, Xiuzhi Ma, Yongchun Hua, Zhichao Hu and Huifang Yao
Sustainability 2025, 17(12), 5654; https://doi.org/10.3390/su17125654 - 19 Jun 2025
Viewed by 446
Abstract
A systematic understanding of the spatial and temporal changes of grassland fractional vegetation cover (FVC) in Xinjiang and its drivers provide scientific reference for regional ecological restoration. In this study, we used MODIS EVI data from 2000 to 2023 and the Pixel binary [...] Read more.
A systematic understanding of the spatial and temporal changes of grassland fractional vegetation cover (FVC) in Xinjiang and its drivers provide scientific reference for regional ecological restoration. In this study, we used MODIS EVI data from 2000 to 2023 and the Pixel binary model to estimate the grassland FVC value of Xinjiang; analyze its spatiotemporal dynamics with combination of trend and persistence detection methods; and explore its driving factors with ridge regression and residual analysis. The results show the following: (1) From 2000 to 2020, the grassland FVC in Xinjiang experienced an upward trend on the whole, yet a significant decrease after 2020. Spatially, the distribution characteristics are high in the northwest and low in the southeast, decreasing from mountains to basins. (2) Precipitation and soil moisture affected FVC positively, with contributions of 18.6% and 38.3%, respectively, while air temperature and solar radiation affected it negatively, with contributions of 22.9% and 20.2%, respectively. (3) The change in the grassland FVC in Xinjiang resulted from a combination of climatic factors and human activity, whose relative contribution rates were 57.2% and 42.8%, respectively; furthermore, the areas with positive effects on the FVC were smaller than those with negative effects. (4) While the FVCs of most grassland types in Xinjiang were dominantly influenced by both climatic factors and human activity, climatic conditions were the dominant drivers of the FVCs of temperate typical grasslands and temperate desert grasslands, whereas human activities had more influence on the FVC of temperate meadow grasslands. This study provides a scientific basis and guidance for optimizing the ecological barrier function and regulating vegetation coverage in arid areas by analyzing the spatiotemporal dynamics of grassland coverage in Xinjiang and quantifying the impact of different environmental factors on it. Full article
Show Figures

Figure 1

28 pages, 4199 KiB  
Article
Dose Reduction in Scintigraphic Imaging Through Enhanced Convolutional Autoencoder-Based Denoising
by Nikolaos Bouzianis, Ioannis Stathopoulos, Pipitsa Valsamaki, Efthymia Rapti, Ekaterini Trikopani, Vasiliki Apostolidou, Athanasia Kotini, Athanasios Zissimopoulos, Adam Adamopoulos and Efstratios Karavasilis
J. Imaging 2025, 11(6), 197; https://doi.org/10.3390/jimaging11060197 - 14 Jun 2025
Viewed by 567
Abstract
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: [...] Read more.
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: A supervised learning framework was developed using real-world paired low- and full-dose images from 105 patients. Data were acquired using standard clinical gamma cameras at the Nuclear Medicine Department of the University General Hospital of Alexandroupolis. The ECAE architecture integrates multiscale feature extraction, channel attention mechanisms, and efficient residual blocks to reconstruct high-quality images from low-dose inputs. The model was trained and validated using quantitative metrics—Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)—alongside qualitative assessments by nuclear medicine experts. Results: The model achieved significant improvements in both PSNR and SSIM across all tested dose levels, particularly between 30% and 70% of the full dose. Expert evaluation confirmed enhanced visibility of anatomical structures, noise reduction, and preservation of diagnostic detail in denoised images. In blinded evaluations, denoised images were preferred over the original full-dose scans in 66% of all cases, and in 61% of cases within the 30–70% dose range. Conclusion: The proposed ECAE model effectively reconstructs high-quality bone scintigraphy images from substantially reduced-dose acquisitions. This approach supports dose reduction in nuclear medicine imaging while maintaining—or even enhancing—diagnostic confidence, offering practical benefits in patient safety, workflow efficiency, and environmental impact. Full article
Show Figures

Figure 1

23 pages, 19178 KiB  
Article
High Field Strength Element (HFSE) and Rare Earth Element (REE) Enrichment in Laterite Deposit of High Background Natural Radiation Area (HBNRA) of Mamuju, West Sulawesi, Indonesia
by I Gde Sukadana, Sulaeman, Heri Syaeful, Frederikus Dian Indrastomo, Tyto Baskara Adimedha, Roni Cahya Ciputra, Fadiah Pratiwi, Deni Mustika, Agus Sumaryanto, Muhammad Burhannudinnur, Rr Arum Puni Rijanti, Puji Santosa and Susilo Widodo
Resources 2025, 14(5), 84; https://doi.org/10.3390/resources14050084 - 20 May 2025
Viewed by 1017
Abstract
The Mamuju region in West Sulawesi, Indonesia, is a High Background Natural Radiation Area (HBNRA) characterized by a significant enrichment of high field strength elements (HFSEs) and rare earth elements (REEs) within its lateritic deposits. This study investigates the geochemical behavior, mineralogical distribution, [...] Read more.
The Mamuju region in West Sulawesi, Indonesia, is a High Background Natural Radiation Area (HBNRA) characterized by a significant enrichment of high field strength elements (HFSEs) and rare earth elements (REEs) within its lateritic deposits. This study investigates the geochemical behavior, mineralogical distribution, and enrichment processes of HFSEs and REEs in lateritic profiles of drill cores and surface samples derived from alkaline volcanic rocks. The mineralogy and geochemical content of HFSEs and REEs in the alkaline bedrocks indicate its potential to become a source of lateritic enrichment. An intense lateritic weathering process leads to the residual accumulation of HFSEs and REEs, particularly in B-horizon soils, where clay minerals and Fe–Al oxides are crucial in element precipitation. Moreover, groundwater redox conditions are a key factor for uranium precipitation in the lateritic profile. The findings provide insight into the potential of lateritic weathering as a natural mechanism for HFSE and REE concentration, contributing to the broader understanding of critical metal resources in Indonesia. These insights have implications for sustainable resource exploration and environmental management in areas with high natural radiation exposure. Full article
Show Figures

Figure 1

40 pages, 3271 KiB  
Article
Efficiency Evaluation of a Photovoltaic-Powered Water Treatment System with Natural Sedimentation Pretreatment for Arsenic Removal in High Water Vulnerability Areas: Application in La Yarada Los Palos District, Tacna, Peru
by Luis Johnson Paúl Mori Sosa
Sustainability 2025, 17(7), 2987; https://doi.org/10.3390/su17072987 - 27 Mar 2025
Viewed by 737
Abstract
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 [...] Read more.
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 mg/L, significantly surpassing the World Health Organization (WHO) limit of 10 µg/L (0.01 mg/L) for drinking water. The system integrates a natural sedimentation pretreatment stage in a geomembrane-lined reservoir, followed by oxidation with sodium hypochlorite, coagulation, and adsorption. Arsenic removal efficiencies ranged from 99.72% to 99.85%, reducing residual concentrations below WHO guidelines. Pretreatment significantly improved performance, reducing turbidity by up to 66.67% and TSS by up to 70.37%, optimizing subsequent treatment stages. Operationally, pretreatment decreased cleaning frequency from six to four cleanings per month, while backwashing energy consumption dropped by 33% (from 45.72 kWh to 30.48 kWh). The photovoltaic system leveraged the region’s high solar radiation, achieving an average daily generation of 20.31 kWh and an energy surplus of 33.08%. The system’s performance was evaluated within the context of existing arsenic removal technologies, demonstrating that the integration of natural sedimentation and renewable energy constitutes a viable operational alternative. Given the regulatory framework in Peru, where arsenic limits align with WHO standards, conventional water treatment systems are normatively and technically unfeasible under national legislation. Furthermore, La Yarada Los Palos District faces challenges due to its limited infrastructure for conventional electrification via power grid, as identified in national reports on rural electrification and gaps in access to basic services. Beyond its performance in the study area, the system’s modular design allows adaptation to diverse water sources with varying arsenic concentrations, turbidity levels, and other physicochemical characteristics. In remote regions with limited access to the power grid, such as the study site, photovoltaic energy provides a self-sustaining and replicable alternative, particularly in arid and semi-arid areas with high solar radiation. These conditions are not exclusive to Latin America but are also prevalent in remote regions of Africa, the Middle East, Asia, and Oceania, where groundwater arsenic contamination is a significant issue and renewable energy availability can enhance water treatment sustainability. These findings underscore the potential of using sustainable energy solutions to address water contamination challenges in remote areas. The modular and scalable design of this system enables its replication in regions with adverse hydrogeological conditions, integrating renewable energy and pretreatment strategies to enhance water treatment performance. The framework presented in this study offers a replicable and efficient approach for implementing eco-friendly water treatment systems in regions with similar environmental and resource constraints. Full article
Show Figures

Figure 1

54 pages, 6338 KiB  
Review
Process Technologies for Disinfection of Food-Contact Surfaces in the Dry Food Industry: A Review
by Harleen Kaur Dhaliwal, Shivani Sonkar, Prithviraj V, Luis Puente and M. S. Roopesh
Microorganisms 2025, 13(3), 648; https://doi.org/10.3390/microorganisms13030648 - 12 Mar 2025
Cited by 1 | Viewed by 3129
Abstract
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in [...] Read more.
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in cross-contamination and compromise the safety of low-aw foods. The bactericidal potential of various conventional and novel disinfection technologies has been explored in the dry food industry. However, the attachment behavior of bacterial pathogens to food-contact surfaces in low-aw conditions and their subsequent response to the cleaning and disinfection practices requires further elucidation. The review summarizes the elements that influence disinfection, such as the presence of organic residues, persistent strains, and the possibility of microbial biotransfer. This review explores in detail the selected dry disinfection technologies, including superheated steam, fumigation, alcohol-based disinfectants, UV radiation, and cold plasma, that can be used in the dry food industry. The review also highlights the use of several wet disinfection technologies employing chemical antimicrobial agents against surface-dried microorganisms on food-contact surfaces. In addition, the disinfection efficacy of conventional and novel technologies against surface-dried microorganisms on food-contact surfaces, as well as their advantages and disadvantages and underlying mechanisms, are discussed. Dry food processing facilities should implement stringent disinfection procedures to ensure food safety. Environmental monitoring procedures and management techniques are essential to prevent adhesion and allow the subsequent inactivation of microorganisms. Full article
(This article belongs to the Special Issue Advances in Food Microbial Biotechnology)
Show Figures

Figure 1

30 pages, 3771 KiB  
Review
The Hidden Threat of Microplastics in Desert Environments: Environmental Impact, Challenges, and Response Measures
by Huiqi Li, Huanpeng Liu, Qizhuan Lin, Ting Chen and Renyi Peng
Sustainability 2025, 17(5), 1897; https://doi.org/10.3390/su17051897 - 24 Feb 2025
Cited by 2 | Viewed by 1550
Abstract
Microplastic (MP) pollution has garnered widespread attention because of its negative effects, even in the most remote areas of Earth. However, research on MP deposition in deserts, which account for 45% of Earth’s total land area, remains limited. Desert environments, characterized by large [...] Read more.
Microplastic (MP) pollution has garnered widespread attention because of its negative effects, even in the most remote areas of Earth. However, research on MP deposition in deserts, which account for 45% of Earth’s total land area, remains limited. Desert environments, characterized by large temperature fluctuations, high ultraviolet radiation, and strong winds, accelerate the degradation, aging, wind erosion, deposition, and migration of microplastics (MPs). In desert regions, MPs originate primarily from human activities, such as tourism waste, agricultural mulch residues, and artificial water storage systems. Additionally, wind transport, water entrainment, atmospheric deposition, and the migration of wildlife further influence the abundance of MPs in these areas. As MP pollution in desert soils intensifies, it negatively affects local microbial activity, crop yields, the reproduction of rare wildlife, and climate. In response, mitigation strategies, such as biodegradation, organic alternatives, and wasteland transformation, have been proposed. However, challenges remain, including a lack of specific research data and limited economic incentives for environmental protection measures. Drawing on existing research, this paper provides a comprehensive summary of the main sources of MPs in desert areas; the influence of environmental factors on their fate; their detrimental effects on ecosystems (including microorganisms, animals, plants, and climate); and current response measures. Valuable insights are extracted from the available data, highlighting the status and challenges of MP pollution in desert regions, and offering a useful reference for future research in this area. Full article
Show Figures

Graphical abstract

20 pages, 4016 KiB  
Article
Optimization of Green Ultrasound-Assisted Extraction of Carotenoids and Tocopherol from Tomato Waste Using NADESs
by Georgiana Ileana Badea, Florentina Gatea, Simona Carmen Litescu-Filipescu, Andreia Alecu, Ana Chira, Celina Maria Damian and Gabriel Lucian Radu
Molecules 2025, 30(3), 591; https://doi.org/10.3390/molecules30030591 - 28 Jan 2025
Cited by 1 | Viewed by 1529
Abstract
The purpose of this study was to extract the lipophilic fraction from one of the largest source of waste in the industrial sector, namely, the tomato residue from processing the fruit. In order to make this process more environmentally sustainable, this study used [...] Read more.
The purpose of this study was to extract the lipophilic fraction from one of the largest source of waste in the industrial sector, namely, the tomato residue from processing the fruit. In order to make this process more environmentally sustainable, this study used a green extraction protocol employing natural deep eutectic solvents (NADESs) combined with a less energy-consuming technology, the ultrasound-assisted extraction (UAE) method, to simultaneously recover carotenoids and tocopherol from dried powder tomato waste. Two NADESs, one hydrophilic and one hydrophobic, were prepared and compared to support high extraction efficiency and increase the stability of the extracted compounds. The optimal extraction parameters were identified as choline chloride:1,3-butanediol (1:5)-based NADES, a solid-to-liquid ratio of 1:20 (w/v), time of extraction 12 min, temperature 65 °C, radiation frequency 37 Hz, and an ultrasound power level of 70%. The extraction process was intensified and resulted in extracts rich in lycopene (215.13 ± 4.31 μg/g DW), β-carotene (206.95 ± 3.27 μg/g DW), and tocopherol (130.86 ± 8.97 μg/g DW) content, with the highest antioxidant capacity 93.84 ± 0.18 mM Trolox equivalent. Incorporating NADESs for the extraction of bioactive compounds offers numerous benefits, such as improved sustainability, enhanced extraction efficiency, better protection of sensitive compounds, and reduced environmental impact. These advantages make NADESs a promising alternative to traditional organic solvents, especially in industries that require natural, green, and efficient extraction processes for valuable bioactive molecules. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

22 pages, 3386 KiB  
Article
Evaluation of Residues of Amazonian Fruit Piquia (Caryocar villosum) as Sustainable Ingredient for Sunscreen and Cosmetic Formulations
by Izadora de Souza, Gabriella C. P. Grimmelprez, Klenicy K. L. Yamaguchi, Johannes Schleusener, Silke B. Lohan, Martina C. Meinke and Lorena R. Gaspar
Antioxidants 2025, 14(2), 122; https://doi.org/10.3390/antiox14020122 - 21 Jan 2025
Viewed by 1210
Abstract
Amazonian fruit residues like piquia shells are often discarded despite their antioxidant potential for sustainable cosmetic use. This study evaluated the photostability, phototoxicity, and photoprotection of hydroalcoholic piquia shell extract (PqSE) combined with UV filters in solutions and cosmetic formulations. PqSE formulations were [...] Read more.
Amazonian fruit residues like piquia shells are often discarded despite their antioxidant potential for sustainable cosmetic use. This study evaluated the photostability, phototoxicity, and photoprotection of hydroalcoholic piquia shell extract (PqSE) combined with UV filters in solutions and cosmetic formulations. PqSE formulations were photostable, even stabilizing photounstable UV filters. Phototoxicity tests (OECD TG 432) showed no phototoxic potential (MPE < 0.15) and reduction in the phototoxic potential of UV filters, while ocular irritation potential via HET-CAM assay indicated no irritant effects. The extract combined with UV filters enhanced protection against UVA-induced reactive oxygen species (ROS) production, achieving 60.9% effectiveness, outperforming commercial photostabilizers. Against UVB radiation, it showed cellular viability above 80%, comparable to benzophenone-3. PqSE formulations exhibited a radical protection factor (RPF) nine times higher than controls and reduced radical production by 64% after visible/near-infrared (VIS/NIR) irradiation on porcine skin, compared to 38% for controls. Confocal Raman microspectroscopy showed penetration depths below 12 µm for all time points. This study highlights the potential of reusing fruit residues like PqSE as sustainable, effective ingredients in sunscreen formulations, offering enhanced photoprotection and reduced environmental waste. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

23 pages, 26469 KiB  
Article
Upcycling Salmon Skin Waste: Sustainable Bio-Sequins and Guanine Crystals for Eco-Friendly Textile Accessories
by Valentina Clavel, Sebastián Salazar Sandoval, Nataly Silva, Rodrigo Araya-Hermosilla, Alejandra Amenábar and Paulina Contreras
Recycling 2024, 9(6), 127; https://doi.org/10.3390/recycling9060127 - 20 Dec 2024
Viewed by 1546
Abstract
The significant environmental impact from fashion and textile industries has spurred interest in sustainable alternatives, especially for accessories like sequins and beads, whose usage has surged post-pandemic. This study explores the potential of utilizing salmon industry waste from Chile to produce bio-sequins (BS) [...] Read more.
The significant environmental impact from fashion and textile industries has spurred interest in sustainable alternatives, especially for accessories like sequins and beads, whose usage has surged post-pandemic. This study explores the potential of utilizing salmon industry waste from Chile to produce bio-sequins (BS) and guanine crystals (GC) from salmon skin. The production of BS offers a strategy to reduce reliance on non-renewable resources and support sustainable waste management, as these materials decompose naturally without harmful residues. Physicochemical and mechanical characterization of the BS by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD), and Fourier transform infrared spectroscopy (FT-IR), evaluated their feasibility for textile, design, and fashion applications. Additionally, GC were extracted from salmon scales using less hazardous solvents such as acetone, ethanol, and acetic acid, and subsequently immobilized on the BS for decorative purposes. Notably, tensile mechanical properties of the BS improved up to 75% after guanine decoration and exposure to simulated environmental factors like UV radiation. This work addresses the dual challenge of pollution and resource depletion, demonstrating that BS from salmon skin offer an eco-friendly alternative. It underscores the importance of adopting sustainable practices throughout the fashion industry’s production chain. Full article
Show Figures

Figure 1

14 pages, 4382 KiB  
Article
Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data
by Katta Vijayakumar, Panuganti China Sattilingam Devara and Saurabh Yadav
Atmosphere 2024, 15(11), 1383; https://doi.org/10.3390/atmos15111383 - 17 Nov 2024
Cited by 1 | Viewed by 1232
Abstract
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during [...] Read more.
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during biomass-burning events at Amity University Haryana (AUH), at a rural station in Gurugram (Latitude: 28.31° N, Longitude: 76.90° E, 285 m AMSL), employing ground-based observations of AERONET and Aethalometer, as well as satellite and model simulations during 7–16 November 2021. The smoke emissions during the burning events enhanced the aerosol optical depth (AOD) and increased the Angstrom exponent (AE), suggesting the dominance of fine-mode aerosols. A smoke event that affected the study region on 11 November 2021 is simulated using the regional NAAPS model to assess the role of smoke in regional aerosol loading that caused an atmospheric forcing of 230.4 W/m2. The higher values of BC (black carbon) and BB (biomass burning), and lower values of AAE (absorption Angstrom exponent) are also observed during the peak intensity of the smoke-event period. A notable layer of smoke has been observed, extending from the surface up to an altitude of approximately 3 km. In addition, the observations gathered from CALIPSO regarding the vertical profiles of aerosols show a qualitative agreement with the values obtained from AERONET observations. Further, the smoke plumes that arose due to transport of a wide-spread agricultural crop residue burning are observed nationwide, as shown by MODIS imagery, and HYSPLIT back trajectories. Thus, the present study highlights that the smoke aerosol emissions during crop residue burning occasions play a critical role in the local/regional aerosol microphysical and radiation properties, and hence in the climate variability. Full article
Show Figures

Figure 1

17 pages, 16782 KiB  
Article
A Novel Approach for Predicting the Mid–Long-Term Radiation Dose in the Case of a Hypothetical STSBO Nuclear Accident for an Operating Nuclear Power Plant
by Rui Ding and Zehua Liu
Atmosphere 2024, 15(11), 1291; https://doi.org/10.3390/atmos15111291 - 28 Oct 2024
Viewed by 1820
Abstract
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting [...] Read more.
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting the mid–long-term radiation dose in the case of a hypothetical short-term station blackout (STSBO) scenario, one of the aforementioned scenarios. Firstly, the Weather Research and Forecasting (WRF) model was coupled with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (WRF-HYSPLIT) model to establish an atmospheric transport and diffusion model for airborne radionuclides, and the regularity of the atmospheric transport and diffusion for the airborne radionuclides was determined. Subsequently, the Residual Radioactive Material Guidelines (RESRAD) OFFSITE (RESRAD-OFFSITE) code was utilized to establish a radiation dose model for predicting the mid–long-term radiation dose resulting from the airborne radionuclides, and the evolution of the mid–long-term radiation dose was analyzed. Finally, the proposed approach was applied to an ONPP, and the results were used to predict the mid–long-term public radiation dose. The results indicated that the total radiation dose would be lower than the dose limit recommended by the International Commission on Radiological Protection (1 mSv/yr) from the second month to the 100th year after the hypothetical STSBO nuclear accident, and the total radiation dose would decrease slowly over time. Recommendations are made for offsite emergency response measures. These research findings can assist ONPPs in analyzing their environmental impacts in the event of an STSBO scenario. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 2212 KiB  
Article
Decontamination of Fused-Silica Surfaces by UVC Irradiation as Potential Application on Touchscreens
by Ben Sicks, Oksana Gurow, Florian Sommerfeld and Martin Hessling
Microorganisms 2024, 12(10), 2099; https://doi.org/10.3390/microorganisms12102099 - 21 Oct 2024
Cited by 4 | Viewed by 1485
Abstract
The contamination of surfaces by antibiotic-resistant pathogens presents an escalating challenge, especially on touchscreens in public settings such as hospitals, airports, and means of transport. Traditional chemical cleaning agents are often ineffective and leave behind harmful residues. Thus, the application of optical radiation [...] Read more.
The contamination of surfaces by antibiotic-resistant pathogens presents an escalating challenge, especially on touchscreens in public settings such as hospitals, airports, and means of transport. Traditional chemical cleaning agents are often ineffective and leave behind harmful residues. Thus, the application of optical radiation is gaining relevance as a rapid, effective, and environmentally friendly disinfection method. This study examines the contamination of publicly accessible touchscreens and the efficacy of an irradiation approach for the radiation disinfection of microorganisms on quartz surfaces with UVC LEDs. In this setup, the LED radiation is laterally coupled into a quartz plate that serves as cover glass of a simplified touchscreen model. The process allows for the irradiation of microorganisms on the surface, without the user being exposed to hazardous radiation. To assess the efficacy of the disinfection process, a range of bacteria, mostly ESKAPE surrogates, such as Staphylococcus carnosus, Acinetobacter kookii, Escherichia coli, Enterococcus mundtii, and additionally Micrococcus luteus, were spread over a quartz plate with a homebuilt nebulization system. After operating the side-mounted LEDs for 30 s, a reduction in all bacteria except M. luteus by more than three orders of magnitude was observed. In the case of M. luteus, a significant reduction was achieved after 60 s (p < 0.05). This result demonstrates the potential of side-mounted UVC LEDs for rapid disinfection of touchscreens between two users and thus for reducing the spread of pathogens without irradiating humans. Full article
Show Figures

Figure 1

Back to TopTop