Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,344)

Search Parameters:
Keywords = environmental field monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 53964 KiB  
Article
UNet–Transformer Hybrid Architecture for Enhanced Underwater Image Processing and Restoration
by Jie Ji and Jiaju Man
Mathematics 2025, 13(15), 2535; https://doi.org/10.3390/math13152535 (registering DOI) - 6 Aug 2025
Abstract
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across [...] Read more.
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across diverse underwater conditions, such as varying turbidity levels and lighting. This paper proposes a novel hybrid UNet–Transformer architecture based on MaxViT blocks, which effectively combines local feature extraction with global contextual modeling to address challenges including low contrast, color distortion, and detail degradation. Extensive experiments on two benchmark datasets, UIEB and EUVP, demonstrate the superior performance of our method. On UIEB, our model achieves a PSNR of 22.91, SSIM of 0.9020, and CCF of 37.93—surpassing prior methods such as URSCT-SESR and PhISH-Net. On EUVP, it attains a PSNR of 26.12 and PCQI of 1.1203, outperforming several state-of-the-art baselines in both visual fidelity and perceptual quality. These results validate the effectiveness and robustness of our approach under complex underwater degradation, offering a reliable solution for real-world underwater image enhancement tasks. Full article
23 pages, 723 KiB  
Article
Multivariate Modeling of Some Datasets in Continuous Space and Discrete Time
by Rigele Te and Juan Du
Entropy 2025, 27(8), 837; https://doi.org/10.3390/e27080837 (registering DOI) - 6 Aug 2025
Abstract
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. [...] Read more.
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. In this work, we propose several classes of multivariate spatio-temporal covariance matrix functions to model underlying stochastic processes whose discrete temporal margins correspond to well-known autoregressive and moving average (ARMA) models. We derive sufficient and/or necessary conditions under which these functions yield valid covariance matrices. By leveraging established methodologies from time series analysis and spatial statistics, the proposed models are straightforward to identify and fit in practice. Finally, we demonstrate the utility of these multivariate covariance functions through an application to Kansas weather data, using co-kriging for prediction and comparing the results to those obtained from traditional spatio-temporal models. Full article
Show Figures

Figure 1

22 pages, 6201 KiB  
Article
SOAM Block: A Scale–Orientation-Aware Module for Efficient Object Detection in Remote Sensing Imagery
by Yi Chen, Zhidong Wang, Zhipeng Xiong, Yufeng Zhang and Xinqi Xu
Symmetry 2025, 17(8), 1251; https://doi.org/10.3390/sym17081251 - 6 Aug 2025
Abstract
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation [...] Read more.
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation module (SOAM Block) that jointly models object scale and directional features while exploiting geometric symmetry inherent in many remote sensing targets. The SOAM Block is constructed upon a lightweight and efficient Adaptive Multi-Scale (AMS) Module, which utilizes a symmetric arrangement of parallel depth-wise convolutional branches with varied kernel sizes to extract fine-grained multi-scale features without dilation, thereby preserving local context and enhancing scale adaptability. In addition, a Strip-based Context Attention (SCA) mechanism is introduced to model long-range spatial dependencies, leveraging horizontal and vertical 1D strip convolutions in a directionally symmetric fashion. This design captures spatial correlations between distant regions and reinforces semantic consistency in cluttered scenes. Importantly, this work is the first to explicitly analyze the coupling between object scale and orientation in remote sensing imagery. The proposed method addresses the limitations of fixed receptive fields in capturing symmetric directional cues of large-scale objects. Extensive experiments are conducted on two widely used benchmarks—DOTA and HRSC2016—both of which exhibit significant scale variations and orientation diversity. Results demonstrate that our approach achieves superior detection accuracy with fewer parameters and lower computational overhead compared to state-of-the-art methods. The proposed SOAM Block thus offers a robust, scalable, and symmetry-aware solution for high-precision object detection in complex aerial scenes. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 2418 KiB  
Review
Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches
by Ahmad Hassanpour and Bian Yang
Sensors 2025, 25(15), 4792; https://doi.org/10.3390/s25154792 - 4 Aug 2025
Abstract
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and [...] Read more.
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and multi-task learning paradigms. We systematically categorize and analyze existing technologies based on sensing modalities (vision-based, radar-based, thermal imaging, and ambient sensing), integration strategies, and application domains. The paper examines how artificial intelligence has revolutionized this domain, transitioning from early single-modality, single-parameter approaches to sophisticated systems that combine complementary sensing technologies and simultaneously extract multiple vital sign parameters. We discuss the theoretical foundations and practical implementations of multi-modal fusion, analyzing signal-level, feature-level, decision-level, and deep learning approaches to sensor integration. Similarly, we explore multi-task learning frameworks that leverage the inherent relationships between vital sign parameters to enhance measurement accuracy and efficiency. The review also critically addresses persisting technical challenges, clinical limitations, and ethical considerations, including environmental robustness, cross-subject variability, sensor fusion complexities, and privacy concerns. Finally, we outline promising future directions, from emerging sensing technologies and advanced fusion architectures to novel application domains and privacy-preserving methodologies. This review provides a holistic perspective on contactless vital sign monitoring, serving as a reference for researchers and practitioners in this rapidly advancing field. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

20 pages, 4007 KiB  
Article
Sublethal and Lethal Effects of Low-Dose Prothioconazole Alone and in Combination with Low-Dose Lambda-Cyhalothrin on Carabid Beetles in a Field-Realistic Scenario
by Enno Merivee, Anne Mürk, Karin Nurme, Mati Koppel, Angela Ploomi and Marika Mänd
Pollutants 2025, 5(3), 24; https://doi.org/10.3390/pollutants5030024 - 4 Aug 2025
Viewed by 84
Abstract
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such [...] Read more.
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such effects remain largely unstudied in non-target predatory carabid beetles. The carabid beetle Platynus assimilis was subjected to repeated oral and continuous contact exposure to low doses of prothioconazole (20 g ha−1), lambda-cyhalothrin (0.4 g ha−1), or their combination over a 64-day period. The food consumption rate, body mass, locomotor activity, and mortality were monitored throughout the experiment. All pesticide-treated groups showed significantly increased final mortality, with median lethal times (LT50) of 51.6 days for prothioconazole, 60.3 days for lambda-cyhalothrin, and 12.2 days for their combination. A significant synergistic effect on mortality was observed in the combined treatment group, with the highest synergistic ratio detected 20 days after the first exposure. Pesticide-treated beetles exhibited significant abnormalities in locomotor activity and body mass compared to the untreated group. These findings demonstrate that both time-cumulative mortality and potential synergistic interactions, reflecting field-realistic conditions, must be considered in ERA. Failure to do so may lead to an underestimation of pesticide toxicity to predatory carabids. Full article
Show Figures

Graphical abstract

21 pages, 1260 KiB  
Review
Comprehensive Overview Assessment on Legal Guarantee System of Wetland Carbon Sink Trading for One Belt and One Road Initiative
by Jingjing Min, Wanwu Yuan, Wei He, Pingping Luo, Hanming Zhang and Yang Zhao
Land 2025, 14(8), 1583; https://doi.org/10.3390/land14081583 - 3 Aug 2025
Viewed by 201
Abstract
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks [...] Read more.
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks in these countries. It explores the necessity of legal system construction for their carbon sink trading. This study finds that smooth trading requires clear property rights definition rules, efficient market trading entities, definite carbon sink trading price rules, financial support aligned with the Equator Principles, and support from biodiversity-compatible environmental regulatory principles. Currently, there are still obstacles in wetland carbon sink trading in the Belt and Road, such as property rights confirmation, an accounting system, an imperfect market trading mechanism, and the coexistence of multiple trading risks. Therefore, this paper first proposes to clarify the goal of the legal guarantee mechanism. Efforts should focus on promoting a consensus on wetland carbon sink ownership and establishing a unified accounting standard system; simultaneously, the relevant departments should conduct field investigations and monitoring, standardize the market order, and strengthen government financial support and funding guarantees. Full article
Show Figures

Figure 1

20 pages, 6543 KiB  
Article
Study of Antarctic Sea Ice Based on Shipborne Camera Images and Deep Learning Method
by Xiaodong Chen, Shaoping Guo, Qiguang Chen, Xiaodong Chen and Shunying Ji
Remote Sens. 2025, 17(15), 2685; https://doi.org/10.3390/rs17152685 - 3 Aug 2025
Viewed by 150
Abstract
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab [...] Read more.
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab and U-Net, were employed to automatically obtain sea ice concentration (SIC) and sea ice thickness (SIT), providing high-frequency data at 5-min intervals. During the observation period, ice navigation accounted for 32 days, constituting less than 20% of the total 163 voyage days. Notably, 63% of the navigation was in ice fields with less than 10% concentration, while only 18.9% occurred in packed ice (concentration > 90%) or level ice regions. SIT ranges from 100 cm to 234 cm and follows a normal distribution. The results demonstrate that, to achieve enhanced navigation efficiency and fulfill expedition objectives, the research vessel substantially reduced duration in high-concentration ice areas. Additionally, the results of SIC extracted from shipborne camera images were compared with the data from the Copernicus Marine Environment Monitoring Service (CMEMS) satellite remote sensing. In summary, the sea ice parameter data obtained from shipborne camera images offer high spatial and temporal resolution, making them more suitable for engineering applications in establishing sea ice environmental parameters. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 201
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 - 2 Aug 2025
Viewed by 232
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 - 2 Aug 2025
Viewed by 304
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

15 pages, 2466 KiB  
Article
A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
by Yuheng Zheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang and Hong Zheng
Appl. Sci. 2025, 15(15), 8593; https://doi.org/10.3390/app15158593 (registering DOI) - 2 Aug 2025
Viewed by 137
Abstract
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a [...] Read more.
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a broad measurement range. Nevertheless, due to the low measurement accuracy under micro gas flow caused by nonlinear errors and a relatively complex structure, traditional laminar flow measurement devices exhibit limitations in micro gas flow measurement scenarios. This study proposes a novel micro gas flow measurement method based on a single capillary laminar flow element, which simplifies the structure and enhances applicability in the field of micro gas flow. Through structural optimization with precise control of the capillary length–diameter ratios and theoretical error correction based on computational analysis, nonlinear errors were effectively reduced while improving the measurement accuracy in the field of micro gas flow. The proposed methodology was systematically validated through computational fluid dynamics simulations (ANSYS Fluent 2021 R1) and experimental investigations using a dedicated test platform. The experimental results show that the relative error of the measurement system within the full measurement range is less than ±0.6% (1–10 cm3/min; cm3/min means cubic centimeter per minute), and its accuracy is superior to 1% of reading (1% Rd) or 1.5% of reading (1.5% Rd) of conventional laminar flowmeters. The fitting curve of the flow rate versus the pressure difference derived from the measurement results maintains an excellent linear correlation (R2 > 0.99), thus confirming that this method has practical application value in the field of micro gas flow measurement. Full article
Show Figures

Figure 1

16 pages, 3217 KiB  
Article
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a [...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy. Full article
Show Figures

Graphical abstract

16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 118
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

Back to TopTop