Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = enoyl-ACP reductase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6331 KiB  
Article
Integrative Analysis of Iso-Seq and RNA-Seq Identifies Key Genes Related to Fatty Acid Biosynthesis and High-Altitude Stress Adaptation in Paeonia delavayi
by Qiongji He, Wenjue Yuan, Rui Wang, Wengao Yang, Guiqing He, Jinglong Cao, Yan Li, Lei Ye, Zhaoguang Li and Zhijiang Hou
Genes 2025, 16(8), 919; https://doi.org/10.3390/genes16080919 (registering DOI) - 30 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq [...] Read more.
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq and RNA-seq analysis to elucidate the transcriptional profile across diverse altitudes and three seed developmental stages. Results: Using Pacbio full-length cDNA sequencing, we identified 39,267 full-length transcripts, with 80.03% (31,426) achieving successful annotation. RNA-seq analysis uncovered 11,423 and 9565 differentially expressed genes (DEGs) in response to different altitude and developmental stages, respectively. KEGG analysis indicated that pathways linked to fatty acid metabolism were notably enriched during developmental stages. In contrast, pathways associated with amino acid and protein metabolism were significantly enriched under different altitudes. Furthermore, we identified 34 DEGs related to fatty acid biosynthesis, including genes encoding pivotal enzymes like biotin carboxylase, carboxyl transferase subunit alpha, malonyl-CoA-acyl carrier protein transacylase, 3-oxoacyl-ACP reductase, 3-hydroxyacyl-ACP dehydratase, and stearoyl-ACP desaturase enoyl-ACP reductase. Additionally, ten DEGs were pinpointed as potentially involved in high-altitude stress response. Conclusions: These findings provide insights into the molecular mechanisms of fatty acid biosynthesis and adaptation to high-altitude stress in peony seeds, providing a theoretical foundation for future breeding programs aimed at enhancing seed quality. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

16 pages, 6322 KiB  
Article
X-ray Single-Crystal Analysis, Pharmaco-Toxicological Profile and Enoyl-ACP Reductase-Inhibiting Activity of Leading Sulfonyl Hydrazone Derivatives
by Yoanna Teneva, Rumyana Simeonova, Orlin Besarboliev, Hristina Sbirkova-Dimitrova and Violina T. Angelova
Crystals 2024, 14(6), 560; https://doi.org/10.3390/cryst14060560 - 17 Jun 2024
Cited by 1 | Viewed by 1373
Abstract
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b [...] Read more.
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b, which has proven its potent antimycobacterial activity against Mycobacterium tuberculosis H37Rv with an MIC value of 0.0716 μM, respectively, low cytotoxicity, and very high selectivity indexes (SI = 2216), and which has been fully characterized by Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS) methods. Furthermore, this study assessed the ex vivo antioxidant activity, acute and subacute toxicity, and in vitro inhibition capacity against enoyl-ACP reductase of hydrazones 3a and 3b, as 3a was identified as the second leading compound in our previous research. Compared to isoniazid, compounds 3a and 3b demonstrated lower acute toxicity for intraperitoneal administration, with LD50 values of 866 and 1224.7 mg/kg, respectively. Subacute toxicity tests, involving the repeated administration of a single dose of the test samples per day, revealed no significant deviations in hematological and biochemical parameters or pathomorphological tissues. The compounds exhibited potent antioxidant capabilities, reducing malondialdehyde (MDA) levels and increasing reduced glutathione (GSH). Enzyme inhibition assays of the sulfonyl hydrazones 3a and 3b with IC50 values of 18.2 µM and 10.7 µM, respectively, revealed that enoyl acyl carrier protein reductase (InhA) could be considered as their target enzyme to exhibit their antitubercular activities. In conclusion, the investigated sulfonyl hydrazones display promising drug-like properties and warrant further investigation. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

17 pages, 2845 KiB  
Article
Synthesis, Molecular Docking Study, and Biological Evaluation of New 4-(2,5-Dimethyl-1H-pyrrol-1-yl)-N’-(2-(substituted)acetyl)benzohydrazides as Dual Enoyl ACP Reductase and DHFR Enzyme Inhibitors
by Mater H. Mahnashi, Pooja Koganole, Prem Kumar S. R., Sami S. Ashgar, Ibrahim Ahmed Shaikh, Shrinivas D. Joshi and Ali S. Alqahtani
Antibiotics 2023, 12(4), 763; https://doi.org/10.3390/antibiotics12040763 - 16 Apr 2023
Cited by 7 | Viewed by 3404
Abstract
In this study, a new series of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N’-(2-(substituted)acetyl) benzohydrazides (5a–n) were prepared and new heterocycles underwent thorough characterization and evaluation for antibacterial activity; some of them underwent further testing for in vitro inhibition of enoyl ACP reductase [...] Read more.
In this study, a new series of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N’-(2-(substituted)acetyl) benzohydrazides (5a–n) were prepared and new heterocycles underwent thorough characterization and evaluation for antibacterial activity; some of them underwent further testing for in vitro inhibition of enoyl ACP reductase and DHFR enzymes. The majority of the synthesized molecules exhibited appreciable action against DHFR and enoyl ACP reductase enzymes. Some of the synthesized compounds also showed strong antibacterial and antitubercular properties. In order to determine the potential mode of action of the synthesized compounds, a molecular docking investigation was conducted. The results revealed binding interactions with both the dihydrofolate reductase and enoyl ACP reductase active sites. These molecules represent excellent future therapeutic possibilities with potential uses in the biological and medical sciences due to the compounds’ pronounced docking properties and biological activity. Full article
(This article belongs to the Special Issue Synthesis and Biological Activity of Antimicrobial Agents, 2nd Volume)
Show Figures

Figure 1

13 pages, 1339 KiB  
Communication
Single Turnover of Transient of Reactants Supports a Complex Interplay of Conformational States in the Mode of Action of Mycobacterium tuberculosis Enoyl Reductase
by Leonardo Kras Borges Martinelli, Mariane Rotta, Cristiano Valim Bizarro, Pablo Machado and Luiz Augusto Basso
Future Pharmacol. 2023, 3(2), 379-391; https://doi.org/10.3390/futurepharmacol3020023 - 30 Mar 2023
Viewed by 1691
Abstract
The enoyl reductase from Mycobacterium tuberculosis (MtInhA) was shown to be a major target for isoniazid, the most prescribed first-line anti-tuberculosis agent. The MtInhA (EC 1.3.1.9) protein catalyzes the hydride transfer from the 4S hydrogen of β-NADH to carbon-3 [...] Read more.
The enoyl reductase from Mycobacterium tuberculosis (MtInhA) was shown to be a major target for isoniazid, the most prescribed first-line anti-tuberculosis agent. The MtInhA (EC 1.3.1.9) protein catalyzes the hydride transfer from the 4S hydrogen of β-NADH to carbon-3 of long-chain 2-trans-enoyl thioester substrates (enoyl-ACP or enoyl-CoA) to yield NAD+ and acyl-ACP or acyl-CoA products. The latter are the long carbon chains of the meromycolate branch of mycolic acids, which are high-molecular-weight α-alkyl, β-hydroxy fatty acids of the mycobacterial cell wall. Here, stopped-flow measurements under single-turnover experimental conditions are presented for the study of the transient of reactants. Single-turnover experiments at various enzyme active sites were carried out. These studies suggested isomerization of the MtInhA:NADH binary complex in pre-incubation and positive cooperativity that depends on the number of enzyme active sites occupied by the 2-trans-dodecenoyl-CoA (DD-CoA) substrate. Stopped-flow results for burst analysis indicate that product release does not contribute to the rate-limiting step of the MtInhA-catalyzed chemical reaction. The bearings that the results presented herein have on function-based anti-tuberculosis drug design are discussed. Full article
Show Figures

Graphical abstract

12 pages, 1623 KiB  
Article
Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study
by Kratika Singh, Niharika Pandey, Firoz Ahmad, Tarun Kumar Upadhyay, Mohammad Hayatul Islam, Nawaf Alshammari, Mohd Saeed, Lamya Ahmed Al-Keridis and Rolee Sharma
Antibiotics 2022, 11(8), 1038; https://doi.org/10.3390/antibiotics11081038 - 1 Aug 2022
Cited by 14 | Viewed by 4866
Abstract
Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential [...] Read more.
Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential target of M.tb. involved in the type II fatty acid biosynthesis pathway that controls mycobacterial cell envelope synthesis. We compiled 80 active compounds from Ruta graveolens and citrus plants belonging to the Rutaceae family for pharmacokinetics and molecular docking analyses. The chemical structures of the 80 phytochemicals and the 3D structure of the target protein were retrieved from the PubChem database and RCSB Protein Data Bank, respectively. The evaluation of druglikeness was performed based on Lipinski’s Rule of Five, while the computed phytochemical properties and molecular descriptors were used to predict the ADMET of the compounds. Amongst these, 11 pharmacokinetically-screened compounds were further examined by performing molecular docking analysis with an InhA target using AutoDock 4.2. The docking results showed that gravacridonediol, a major glycosylated natural alkaloid from Ruta graveolens, might possess a promising inhibitory potential against InhA, with a binding energy (B.E.) of −10.80 kcal/mole and inhibition constant (Ki) of 600.24 nM. These contrast those of the known inhibitor triclosan, which has a B.E. of −6.69 kcal/mole and Ki of 12.43 µM. The binding efficiency of gravacridonediol was higher than that of the well-known inhibitor triclosan against the InhA target. The present study shows that the identified natural compound gravacridonediol possesses drug-like properties and also holds promise in inhibiting InhA, a key target enzyme of M.tb. Full article
(This article belongs to the Special Issue Design and Preparation of Antimicrobial Agents)
Show Figures

Figure 1

16 pages, 3040 KiB  
Article
Synthesis and Antimicrobial Activity Screening of Piperazines Bearing N,N′-Bis(1,3,4-thiadiazole) Moiety as Probable Enoyl-ACP Reductase Inhibitors
by Alaa Z. Omar, Najla A. Alshaye, Tawfik M. Mosa, Samir K. El-Sadany, Ezzat A. Hamed and Mohamed A. El-Atawy
Molecules 2022, 27(12), 3698; https://doi.org/10.3390/molecules27123698 - 9 Jun 2022
Cited by 16 | Viewed by 4259
Abstract
A new N,N′-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested [...] Read more.
A new N,N′-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from −6.1090 to −9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score. Full article
(This article belongs to the Special Issue Polysulfur- and Sulfur-Nitrogen Heterocycles II)
Show Figures

Figure 1

22 pages, 6044 KiB  
Article
Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives
by Violina T. Angelova, Tania Pencheva, Nikolay Vassilev, Elena K-Yovkova, Rositsa Mihaylova, Boris Petrov and Violeta Valcheva
Antibiotics 2022, 11(5), 562; https://doi.org/10.3390/antibiotics11050562 - 22 Apr 2022
Cited by 17 | Viewed by 3732
Abstract
Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3ad and sulfonyl hydrazones 5ak were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory [...] Read more.
Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3ad and sulfonyl hydrazones 5ak were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM, comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye reduction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1. 4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demonstrated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively, which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox computational predictions, which showed that all compounds corresponded to Lipinski’s Ro5, and none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallographic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl hydrazones proved to be new classes of lead compounds having the potential of novel candidate antituberculosis drugs. Full article
Show Figures

Figure 1

15 pages, 1903 KiB  
Article
Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus
by Ivan V. Semenyuta, Maria M. Trush, Vasyl V. Kovalishyn, Sergiy P. Rogalsky, Diana M. Hodyna, Pavel Karpov, Zhonghua Xia, Igor V. Tetko and Larisa O. Metelytsia
Int. J. Mol. Sci. 2021, 22(2), 563; https://doi.org/10.3390/ijms22020563 - 8 Jan 2021
Cited by 13 | Viewed by 3659
Abstract
Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = [...] Read more.
Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 − 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates. Full article
Show Figures

Figure 1

16 pages, 3108 KiB  
Article
Anti-Tubercular Properties of 4-Amino-5-(4-Fluoro-3- Phenoxyphenyl)-4H-1,2,4-Triazole-3-Thiol and Its Schiff Bases: Computational Input and Molecular Dynamics
by Katharigatta N. Venugopala, Mahmoud Kandeel, Melendhran Pillay, Pran Kishore Deb, Hassan H. Abdallah, Mohamad Fawzi Mahomoodally and Deepak Chopra
Antibiotics 2020, 9(9), 559; https://doi.org/10.3390/antibiotics9090559 - 31 Aug 2020
Cited by 38 | Viewed by 5185
Abstract
In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin microtiter assay (REMA) [...] Read more.
In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin microtiter assay (REMA) plate method. Test compound 1 exhibited promising anti-TB activity against H37Rv and MDR strains of MTB at 5.5 µg/mL and 11 µg/mL, respectively. An attempt to identify the suitable molecular target for compound 1 was performed using a set of triazole thiol cellular targets, including β-ketoacyl carrier protein synthase III (FABH), β-ketoacyl ACP synthase I (KasA), CYP121, dihydrofolate reductase, enoyl-acyl carrier protein reductase, and N-acetylglucosamine-1-phosphate uridyltransferase. MTB β-ketoacyl ACP synthase I (KasA) was identified as the cellular target for the promising anti-TB parent compound 1 via docking and molecular dynamics simulation. MM(GB/PB)SA binding free energy calculation revealed stronger binding of compound 1 compared with KasA standard inhibitor thiolactomycin (TLM). The inhibitory mechanism of test compound 1 involves the formation of hydrogen bonding with the catalytic histidine residues, and it also impedes access of fatty-acid substrates to the active site through interference with α5–α6 helix movement. Test compound 1-specific structural changes at the ALA274–ALA281 loop might be the contributing factor underlying the stronger anti-TB effect of compound 1 when compared with TLM, as it tends to adopt a closed conformation for the access of malonyl substrate to its binding site. Full article
(This article belongs to the Special Issue Novel Targets and Mechanisms in Antimicrobial Drug Discovery)
Show Figures

Figure 1

9 pages, 1190 KiB  
Article
In Silico Repositioning of Cannabigerol as a Novel Inhibitor of the Enoyl Acyl Carrier Protein (ACP) Reductase (InhA)
by Luca Pinzi, Christian Lherbet, Michel Baltas, Federica Pellati and Giulio Rastelli
Molecules 2019, 24(14), 2567; https://doi.org/10.3390/molecules24142567 - 15 Jul 2019
Cited by 23 | Viewed by 4422
Abstract
Cannabigerol (CBG) and cannabichromene (CBC) are non-psychoactive cannabinoids that have raised increasing interest in recent years. These compounds exhibit good tolerability and low toxicity, representing promising candidates for drug repositioning. To identify novel potential therapeutic targets for CBG and CBC, an integrated ligand-based [...] Read more.
Cannabigerol (CBG) and cannabichromene (CBC) are non-psychoactive cannabinoids that have raised increasing interest in recent years. These compounds exhibit good tolerability and low toxicity, representing promising candidates for drug repositioning. To identify novel potential therapeutic targets for CBG and CBC, an integrated ligand-based and structure-based study was performed. The results of the analysis led to the identification of CBG as a low micromolar inhibitor of the Enoyl acyl carrier protein (ACP) reductase (InhA) enzyme. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 1086 KiB  
Article
3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation
by Lucia Semelková, Ondřej Janďourek, Klára Konečná, Pavla Paterová, Lucie Navrátilová, František Trejtnar, Vladimír Kubíček, Jiří Kuneš, Martin Doležal and Jan Zitko
Molecules 2017, 22(3), 495; https://doi.org/10.3390/molecules22030495 - 21 Mar 2017
Cited by 10 | Viewed by 5008
Abstract
A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some [...] Read more.
A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some cases. Although not initially planned, the reaction conditions were modified to populate this double substituted series. The final compounds were tested against four mycobacterial strains. N-(2-methylbenzyl)-3-((2-methylbenzyl)amino)pyrazine-2-carboxamide (1a) and N-(3,4-dichlorobenzyl)-3-((3,4-dichlorobenzyl)amino)pyrazine-2-carboxamide (9a) proved to be the most effective against Mycobacterium tuberculosis H37Rv, with MIC = 12.5 μg·mL−1. Compounds were screened for antibacterial activity. The most active compound was 3-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (5) against Staphylococcus aureus with MIC = 7.81 μM, and Staphylococcus epidermidis with MIC = 15.62 μM. HepG2 in vitro cytotoxicity was evaluated for the most active compounds; however, no significant toxicity was detected. Compound 9a was docked to several conformations of the enoyl-ACP-reductase of Mycobacterium tuberculosis. In some cases, it was capable of H-bond interactions, typical for most of the known inhibitors. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 2231 KiB  
Article
Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation
by Ondrej Jandourek, Marek Tauchman, Pavla Paterova, Klara Konecna, Lucie Navratilova, Vladimir Kubicek, Ondrej Holas, Jan Zitko and Martin Dolezal
Molecules 2017, 22(2), 223; https://doi.org/10.3390/molecules22020223 - 2 Feb 2017
Cited by 15 | Viewed by 7375
Abstract
Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 [...] Read more.
Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 μM. The best MIC (6 μM) was displayed by 3-[(4-methylbenzyl)amino]pyrazine-2-carboxamide (8) that also showed low cytotoxicity in the HepG2 cell line (IC50 ≥ 250 μM). Only moderate activity against Enterococcus faecalis and Staphylococcus aureus was observed. No activity was detected against any of tested fungal strains. Molecular docking with mycobacterial enoyl-ACP reductase (InhA) was performed to investigate the possible target of the prepared compounds. Active compounds shared common binding interactions of known InhAinhibitors. Antimycobacterial activity of the title compounds was compared to the previously published benzylamino-substituted pyrazines with differing substitution on the pyrazine core (carbonitrile moiety). The title series possessed comparable activity and lower cytotoxicity than molecules containing a carbonitrile group on the pyrazine ring. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

28 pages, 7131 KiB  
Article
Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors
by Camilo Henrique da Silva Lima, Ricardo Bicca De Alencastro, Carlos Roland Kaiser, Marcus Vinícius Nora De Souza, Carlos Rangel Rodrigues and Magaly Girão Albuquerque
Int. J. Mol. Sci. 2015, 16(10), 23695-23722; https://doi.org/10.3390/ijms161023695 - 7 Oct 2015
Cited by 18 | Viewed by 7566
Abstract
Molecular dynamics (MD) simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA) were carried out for up to 20–40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order [...] Read more.
Molecular dynamics (MD) simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA) were carried out for up to 20–40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order to gain more insight about the secondary structure motifs of the InhA substrate-binding pocket. We monitored the lifetime of the main intermolecular interactions: hydrogen bonds and hydrophobic contacts. Our MD simulations demonstrate the importance of evaluating the conformational changes that occur close to the active site of the enzyme-cofactor complex before and after binding of the ligand and the influence of the water molecules. Moreover, the protein-inhibitor total steric (ELJ) and electrostatic (EC) interaction energies, related to Gly96 and Tyr158, are able to explain 80% of the biological response variance according to the best linear equation, pKi = 7.772 − 0.1885 × Gly96 + 0.0517 × Tyr158 (R2 = 0.80; n = 10), where interactions with Gly96, mainly electrostatic, increase the biological response, while those with Tyr158 decrease. These results will help to understand the structure-activity relationships and to design new and more potent anti-TB drugs. Full article
(This article belongs to the Special Issue Solution Chemical Kinetics)
Show Figures

Graphical abstract

15 pages, 420 KiB  
Article
QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors
by Kalyani D. ASGAONKAR, Ganesh D. MOTE and Trupti S. CHITRE
Sci. Pharm. 2014, 82(1), 71-86; https://doi.org/10.3797/scipharm.1310-05 - 24 Nov 2013
Cited by 19 | Viewed by 1994
Abstract
A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour [...] Read more.
A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN-MFA), respectively. The developed QSAR models were found to be statistically significant with respect to training, cross-validation, and external validation. New chemical entities (NCEs) were designed based on the results of the 2D- and 3D-QSAR. NCEs were subjected to Lipinski’s screen to ensure the drug-like pharmacokinetic profile of the designed compounds in order to improve their bioavailability. Also, the binding ability of the NCEs with enoyl-ACP (CoA) reductase was assessed by docking. Full article
19 pages, 1233 KiB  
Article
Pharmacophore and Molecular Docking Guided 3D-QSAR Study of Bacterial Enoyl-ACP Reductase (FabI) Inhibitors
by Xiaoyun Lu, Man Lv, Kun Huang, Ke Ding and Qidong You
Int. J. Mol. Sci. 2012, 13(6), 6620-6638; https://doi.org/10.3390/ijms13066620 - 30 May 2012
Cited by 15 | Viewed by 7354
Abstract
Enoyl acyl carrier protein (ACP) reductase (FabI) is a potential target for the development of antibacterial agents. Three-dimensional quantitative structure-activity relationships (3D-QSAR) for substituted formamides series of FabI inhibitors were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis [...] Read more.
Enoyl acyl carrier protein (ACP) reductase (FabI) is a potential target for the development of antibacterial agents. Three-dimensional quantitative structure-activity relationships (3D-QSAR) for substituted formamides series of FabI inhibitors were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Pharmacophore and molecular docking methods were used for construction of the molecular alignments. A training set of 36 compounds was performed to create the 3D-QSAR models and their external predictivity was proven using a test set of 11 compounds. Graphical interpretation of the results revealed important structural features of the formamides related to the active site of FabI. The results may be exploited for further optimization of the design of new potent FabI inhibitors. Full article
Show Figures

Back to TopTop